• Bakker, D. C. E., and Coauthors, 2016: A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data, 8, 383413, https://doi.org/10.5194/essd-8-383-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barton, A., B. Hales, G. G. Waldbusser, C. Langdon, and R. A. Feely, 2012: The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr., 57, 698710, https://doi.org/10.4319/lo.2012.57.3.0698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, N. R., and Coauthors, 2014: A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography, 27 (1), 126141, https://doi.org/10.5670/oceanog.2014.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, J. E., W.-J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson, and P. A. G. Regnier, 2013: The changing carbon cycle of the coastal ocean. Nature, 504, 6170, https://doi.org/10.1038/nature12857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bednaršek, N., G. A. Tarling, S. Fielding, and D. C. E. Bakker, 2012: Population dynamics and biogeochemical significance of Limacina helicina antarctica in the Scotia Sea (Southern Ocean). Deep-Sea Res. II, 59–60, 105116, https://doi.org/10.1016/j.dsr2.2011.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bednaršek, N., G. A. Tarling, D. C. E. Bakker, S. Fielding, and R. A. Feely, 2014a: Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation. PLOS ONE, 9, e109183, https://doi.org/10.1371/journal.pone.0109183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bednaršek, N., R. A. Feely, J. C. P. Reum, B. Peterson, J. Menkel, S. R. Alin, and B. Hales, 2014b: Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current ecosystem. Proc. Roy. Soc., 281B, 20140123, https://doi.org/10.1098/RSPB.2014.0123.

    • Search Google Scholar
    • Export Citation
  • Bednaršek, N., T. Klinger, C. J. Harvey, S. Weisberg, R. M. McCabe, R. A. Feely, J. Newton, and N. Tolimieri, 2017: New ocean, new needs: Application of pteropod shell dissolution as a biological indicator for marine resource management. Ecol. Indic., 76, 240244, https://doi.org/10.1016/j.ecolind.2017.01.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bresnahan, P. J., T. R. Martz, Y. Takeshita, K. S. Johnson, and M. LaShomb, 2014: Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods Oceanogr., 9, 4460, https://doi.org/10.1016/j.mio.2014.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavez, F. P., J. Sevadjian, C. Wahl, J. Friederich, and G. E. Friederich, 2018: Measurements of pCO2 and pH from an autonomous surface vehicle in a coastal upwelling system. Deep-Sea Res. II, 151, 137146, https://doi.org/10.1016/j.dsr2.2017.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damm, E., E. Helmke, S. Thoms, U. Schauer, E. Nöthig, K. Bakker, and R. P. Kiene, 2010: Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7, 10991108, https://doi.org/10.5194/bg-7-1099-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dlugokencky, E. J., J. W. Mund, A. M. Crotwell, M. J. Crotwell, and K. W. Thoning, 2016: Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1968–2016, version 2017-07. NOAA, accessed 1 August 2017.

  • Dlugokencky, E. J., K. W. Thoning, P. M. Lang, and P. P. Tans, 2019: NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network. NOAA, accessed 10 January 2020, ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/.

  • Fabry, V. J., B. A. Seibel, R. A. Feely, and J. C. Orr, 2008: Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci., 65, 414432, https://doi.org/10.1093/icesjms/fsn048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fassbender, A. J., and Coauthors, 2018: Seasonal carbonate chemistry variability in marine surface waters of the US Pacific Northwest. Earth Syst. Sci. Data, 10, 13671401, https://doi.org/10.5194/essd-10-1367-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feely, R. A., and Coauthors, 2016: Chemical and biological impacts of ocean acidification along the west coast of North America. Estuarine Coastal Shelf Sci., 183, 260270, https://doi.org/10.1016/J.ECSS.2016.08.043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedlingstein, P., and Coauthors, 2019: Global carbon budget 2019. Earth Syst. Sci. Data, 11, 17831838, https://doi.org/10.5194/essd-11-1783-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gruber, N., and Coauthors, 2019: The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363, 11931199, https://doi.org/10.1126/science.aau5153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Humphries, R. S., I. M. McRobert, W. A. Ponsonby, J. P. Ward, M. D. Keywood, Z. Loh, P. B. Krummel, and J. Harnwell, 2019: Identification of platform exhaust on the RV Investigator. Atmos. Meas. Tech., 12, 30193038, https://doi.org/10.5194/amt-12-3019-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keeling, C. D., S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and H. A. Meijer, 2005: Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, I. T. Baldwin et al., Eds., Springer, 83–113.

    • Crossref
    • Export Citation
  • Kleypas, J. A., R. A. Feely, V. J. Fabry, C. Langdon, C. L. Sabine, and L. L. Robbins, 2006: Impacts of ocean acidification on coral reefs and other marine calcifiers: A guide for future research. NSF–NOAA–USGS Rep., 88 pp.

  • Landschützer, P., N. Gruber, D. C. E. Bakker, and U. Schuster, 2014: Recent variability of the global ocean carbon sink. Global Biogeochem. Cycles, 28, 927949, https://doi.org/10.1002/2014GB004853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindquist, A., and Coauthors, 2018: Puget Sound marine waters: 2017 overview. NOAA Rep., 52 pp., https://www.psp.wa.gov/PSmarinewatersoverview.php.

  • Martz, T. R., J. G. Connery, and K. S. Johnson, 2010: Testing the Honeywell Durafet® for seawater pH applications. Limnol. Oceanogr. Methods, 8, 172184, https://doi.org/10.4319/lom.2010.8.172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meinig, C., R. Jenkins, N. Lawrence-Slavas, and H. Tabisola, 2015: The use of Saildrones to examine spring conditions in the Bering Sea: Vehicle specification and mission performance. OCEANS 2015, Washington, DC, Marine Technology Society–IEEE, https://doi.org/10.23919/OCEANS.2015.7404348.

    • Crossref
    • Export Citation
  • Meinig, C., and Coauthors, 2019: Public–private partnerships to advance regional ocean-observing capabilities: A Saildrone and NOAA-PMEL case study and future considerations to expand to global scale observing. Front. Mar. Sci., 6, 448, https://doi.org/10.3389/FMARS.2019.00448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Northcott, D., J. Sevadjian, D. A. Sancho-Gallegos, C. Wahl, J. Friederich, and F. P. Chavez, 2019: Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLOS ONE, 14, e0214403, https://doi.org/10.1371/journal.pone.0214403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olsen, A., and Coauthors, 2019: GLODAPv2.2019—An update of GLODAPv2. Earth Syst. Sci. Data, 11, 14371461, https://doi.org/10.5194/essd-11-1437-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrot, D., and Coauthors, 2009: Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Res. II, 56, 512522, https://doi.org/10.1016/j.dsr2.2008.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reum, J. C. P., and Coauthors, 2015: Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen. ICES J. Mar. Sci., 73, 582595, https://doi.org/10.1093/ICESJMS/FSU231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabine, C. L., and Coauthors, 2004: The oceanic sink for anthropogenic CO2. Science, 305, 367371, https://doi.org/10.1126/science.1097403.

  • Sutton, A. J., and Coauthors, 2014: A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system. Earth Syst. Sci. Data, 6, 353366, https://doi.org/10.5194/essd-6-353-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, A. J., and Coauthors, 2019: Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth Syst. Sci. Data, 11, 421439, https://doi.org/10.5194/essd-11-421-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Coauthors, 2009: Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. II, 56, 554577, https://doi.org/10.1016/j.dsr2.2008.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., R. Feely, A. Sutton, C. Sabine, K. Tedesco, N. Gruber, and S. Doney, 2013a: An integrated ocean carbon observing system (IOCOS). U.S. IOOS Summit, Herndon, VA, Interagency Ocean Observation Committee.

  • Wanninkhof, R., and Coauthors, 2013b: Global ocean carbon uptake: Magnitude, variability and trends. Biogeosciences, 10, 19832000, https://doi.org/10.5194/BG-10-1983-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanninkhof, R., L. Barbero, R. Byrne, W.-J. Cai, W.-J. Huang, J.-Z. Zhang, M. Baringer, and C. Langdon, 2015: Ocean acidification along the Gulf Coast and east coast of the USA. Cont. Shelf Res., 98, 5471, https://doi.org/10.1016/j.csr.2015.02.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willcox, S., C. Meinig, C. L. Sabine, N. Lawrence-Slavas, T. Richardson, R. Hine, and J. Manley, 2010: An autonomous mobile platform for underway surface carbon measurements in open-ocean and coastal waters. OCEANS 2009, Biloxi, MS, Marine Technology Society–IEEE, https://doi.org/10.23919/OCEANS.2009.5422067.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 154 154 89
Full Text Views 10 10 9
PDF Downloads 16 16 15

Evaluation of a New Carbon Dioxide System for Autonomous Surface Vehicles

View More View Less
  • 1 University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 2 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington
  • 3 University of South Carolina, Columbia, South Carolina
  • 4 Saildrone, Inc., Alameda, California
  • 5 Liquid Robotics, Inc., Sunnyvale, California
  • 6 Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
© Get Permissions
Restricted access

Abstract

Current carbon measurement strategies leave spatiotemporal gaps that hinder the scientific understanding of the oceanic carbon biogeochemical cycle. Data products and models are subject to bias because they rely on data that inadequately capture mesoscale spatiotemporal (kilometers and days to weeks) changes. High-resolution measurement strategies need to be implemented to adequately evaluate the global ocean carbon cycle. To augment the spatial and temporal coverage of ocean–atmosphere carbon measurements, an Autonomous Surface Vehicle CO2 (ASVCO2) system was developed. From 2011 to 2018, ASVCO2 systems were deployed on seven Wave Glider and Saildrone missions along the U.S. Pacific and Australia’s Tasmanian coastlines and in the tropical Pacific Ocean to evaluate the viability of the sensors and their applicability to carbon cycle research. Here we illustrate that the ASVCO2 systems are capable of long-term oceanic deployment and robust collection of air and seawater pCO2 within ±2 μatm based on comparisons with established shipboard underway systems, with previously described Moored Autonomous pCO2 (MAPCO2) systems, and with companion ASVCO2 systems deployed side by side.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Christopher Sabine; csabine@hawaii.edu

Abstract

Current carbon measurement strategies leave spatiotemporal gaps that hinder the scientific understanding of the oceanic carbon biogeochemical cycle. Data products and models are subject to bias because they rely on data that inadequately capture mesoscale spatiotemporal (kilometers and days to weeks) changes. High-resolution measurement strategies need to be implemented to adequately evaluate the global ocean carbon cycle. To augment the spatial and temporal coverage of ocean–atmosphere carbon measurements, an Autonomous Surface Vehicle CO2 (ASVCO2) system was developed. From 2011 to 2018, ASVCO2 systems were deployed on seven Wave Glider and Saildrone missions along the U.S. Pacific and Australia’s Tasmanian coastlines and in the tropical Pacific Ocean to evaluate the viability of the sensors and their applicability to carbon cycle research. Here we illustrate that the ASVCO2 systems are capable of long-term oceanic deployment and robust collection of air and seawater pCO2 within ±2 μatm based on comparisons with established shipboard underway systems, with previously described Moored Autonomous pCO2 (MAPCO2) systems, and with companion ASVCO2 systems deployed side by side.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Christopher Sabine; csabine@hawaii.edu
Save