• Acquistapace, C., U. Löhnert, M. Maahn, and P. Kollias, 2019: A new criterion to improve operational drizzle detection with ground-based remote sensing. J. Atmos. Oceanic Technol., 36, 781801, https://doi.org/10.1175/JTECH-D-18-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahlgrimm, M., and R. Forbes, 2014: Improving the representation of low clouds and drizzle in the ECMWF model based on ARM observations from the Azores. Mon. Wea. Rev., 142, 668685, https://doi.org/10.1175/MWR-D-13-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., A. Lauer, and J.-L. Brenguier, 2011: Scale-aware integral constraints on autoconversion and accretion in regional and global climate models. Geophys. Res. Lett., 38, L10809, https://doi.org/10.1029/2011GL047618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, Cambridge University Press, 571658.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Cadeddu, M. P., R. Marchand, E. Orlandi, D. D. Turner, and M. Mech, 2017: Microwave passive ground-based retrievals of cloud and rain liquid water path in drizzling clouds: Challenges and possibilities. IEEE Trans. Geosci. Remote Sens., 55, 64686481, https://doi.org/10.1109/TGRS.2017.2728699.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., A. Marshak, Y. Knyazikhin, W. J. Wiscombe, H. W. Barker, J. C. Barnard, and Y. Luo, 2006: Remote sensing of cloud properties using ground-based measurements of zenith radiance. J. Geophys. Res., 111, D16201, https://doi.org/10.1029/2005JD006843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918, https://doi.org/10.1256/qj.03.187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometer. 2. Sensor accuracy and synergy. Radio Sci., 38, 8042, https://doi.org/10.1029/2002RS002634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielding, M. D., J. C. Chiu, R. J. Hogan, and G. Feingold, 2014: A novel ensemble method for retrieving properties of warm cloud in 3-D using ground-based scanning radar and zenith radiances. J. Geophys. Res. Atmos., 119, 10 91210 930, https://doi.org/10.1002/2014jd021742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielding, M. D., J. C. Chiu, R. J. Hogan, G. Feingold, E. Eloranta, E. J. O’Connor, and M. P. Cadeddu, 2015: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances. Atmos. Meas. Tech., 8, 26632683, https://doi.org/10.5194/amt-8-2663-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, C. R. Terai, and R. Wood, 2013: Microphysical process rates and global aerosol–cloud interactions. Atmos. Chem. Phys., 13, 98559867, https://doi.org/10.5194/acp-13-9855-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., L. W. Horowitz, and H. Levy II, 2013: Cloud tuning in a coupled climate model: Impact on 20th century warming. Geophys. Res. Lett., 40, 22462251, https://doi.org/10.1002/grl.50232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Oak Ridge National Laboratory Rep. ORNL/CDIAC-153, 54 pp., https://atmos.uw.edu/~sgw/PAPERS/2007_ndp026e.pdf.

    • Crossref
    • Export Citation
  • Hartmann, D. L., M. E. Ockertbell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, X., K. Suzuki, and T. Michibata, 2019: The key role of warm rain parameterization in determining the aerosol indirect effect in a global climate model. J. Climate, 32, 44094430, https://doi.org/10.1175/JCLI-D-18-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luke, E. P., and P. Kollias, 2013: Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra. J. Atmos. Oceanic Technol., 30, 16561671, https://doi.org/10.1175/JTECH-D-11-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., S. Avey, S. Cooper, M. Lebsock, S. Tanelli, and G. Dobrowalski, 2016: Retrieving co-occurring cloud and precipitation properties of warm marine boundary layer clouds with A-Train data. J. Geophys. Res. Atmos., 121, 40084033, https://doi.org/10.1002/2015jd023681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, J. A., J. C. Chiu, R. J. Hogan, E. J. O’Connor, T. S. L’Ecuyer, T. H. Stein, and A. Jefferson, 2014: Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. J. Geophys. Res. Atmos., 119, 41364148, https://doi.org/10.1002/2013jd021339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, E. R. Westwater, S. A. Clough, K. CadyPereira, and J. C. Liljegren, 2003: An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data. J. Geophys. Res., 108, 4773, https://doi.org/10.1029/2003JD003843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michibata, T., and T. Takemura, 2015: Evaluation of autoconversion schemes in a single model framework with satellite observations. J. Geophys. Res. Atmos., 120, 95709590, https://doi.org/10.1002/2015jd023818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, C. M., D. N. Moisseev, and V. Chandrasekar, 2008: A parametric time domain method for spectral moment estimation and clutter mitigation for weather radars. J. Atmos. Oceanic Technol., 25, 8392, https://doi.org/10.1175/2007JTECHA927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 1995: Frequencies and characteristics of global oceanic precipitation from shipboard present-weather reports. Bull. Amer. Meteor. Soc., 76, 15931616, https://doi.org/10.1175/1520-0477(1995)076<1593:FACOGO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rémillard, J., P. Kollias, E. Luke, and R. Wood, 2012: Marine boundary layer cloud observations in the Azores. J. Climate, 25, 73817398, https://doi.org/10.1175/JCLI-D-11-00610.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rusli, S. P., D. P. Donovan, and H. W. J. Russchenberg, 2017: Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations. Atmos. Meas. Tech., 10, 47774803, https://doi.org/10.5194/amt-10-4777-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, H., M. Lebsock, K. Suzuki, G. Stephens, and M. Wang, 2017: An investigation of microphysics and subgrid-scale variability in warm-rain clouds using the A-Train observations and a multiscale modeling framework. J. Geophys. Res. Atmos., 122, 74937504, https://doi.org/10.1002/2016jd026404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tonttila, J., H. Järvinen, and P. Räisänen, 2015: Explicit representation of subgrid variability in cloud microphysics yields weaker aerosol indirect effect in the ECHAM5-HAM2 climate model. Atmos. Chem. Phys., 15, 703714, https://doi.org/10.5194/acp-15-703-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, T., and J. Quaas, 2012: Incorporating the subgrid-scale variability of clouds in the autoconversion parameterization using a PDF-scheme. J. Adv. Model. Earth Syst., 4, M11003, https://doi.org/10.1029/2012MS000156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 30343050, https://doi.org/10.1175/JAS3530.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wu, P., X. Dong, B. Xi, Y. Liu, M. Thieman, and P. Minnis, 2017: Effects of environment forcing on marine boundary layer cloud-drizzle processes. J. Geophys. Res. Atmos., 122, 44634478, https://doi.org/10.1002/2016jd026326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., G. Feingold, and J. Kazil, 2017: Stratocumulus to cumulus transition by drizzle. J. Adv. Model. Earth Syst., 9, 23332349, https://doi.org/10.1002/2017MS001104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., T. Heus, and P. Kollias, 2017: Influences of drizzle on stratocumulus cloudiness and organization. J. Geophys. Res. Atmos., 122, 69897003, https://doi.org/10.1002/2017jd026641.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6382 6382 6157
Full Text Views 10 10 8
PDF Downloads 20 20 17

Separating Cloud and Drizzle Signals in Radar Doppler Spectra Using a Parametric Time Domain Method

View More View Less
  • 1 Colorado State University, Fort Collins, Colorado
  • 2 National Research Council Canada, Ottawa, Ontario, Canada
  • 3 Colorado State University, Fort Collins, Colorado
  • 4 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • 5 Department of Earth and Atmospheric Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada
© Get Permissions
Restricted access

Abstract

The ability to separate cloud and drizzle returns in active remote sensing observations is important for understanding the microphysics of clouds and precipitation. Yet, robust separations remain challenging in radar remote sensing. Prior methods for cloud and drizzle separation for radar observations use the properties of the Doppler spectra such as skewness. However, these methods have challenges when the drizzle becomes dominant in the observation volume. This paper presents a parametric time domain method (PTDM) that separates cloud and drizzle using the Doppler spectra measurements without assuming any prior properties of cloud and drizzle. The advantage of PTDM is that it can estimate the signal properties in the time domain and can obtain the cloud and drizzle estimates simultaneously. Based on our radar signal simulations, the uncertainty in estimated power and velocity from PTDM are within 2 dB and 0.02 m s−1, respectively. We have also evaluated the PTDM algorithm using observations from the Atmospheric Radiation Measurement (ARM) Program W-band cloud radar in the Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP-MBL) campaign at the Azores in 2009–10. Two cases corresponding to light and moderate drizzling conditions are considered for the study. The statistics of the estimates obtained show that the PTDM method performs well in separating the cloud and drizzle returns. Finally, the estimated cloud and drizzle reflectivity from PTDM were used to retrieve their corresponding microphysical properties, showing that the retrieved liquid water path agrees to 25 g m−2 with the benchmark microwave method.

Corresponding author: Shashank S. Joshil, sjoshil@colostate.edu

Abstract

The ability to separate cloud and drizzle returns in active remote sensing observations is important for understanding the microphysics of clouds and precipitation. Yet, robust separations remain challenging in radar remote sensing. Prior methods for cloud and drizzle separation for radar observations use the properties of the Doppler spectra such as skewness. However, these methods have challenges when the drizzle becomes dominant in the observation volume. This paper presents a parametric time domain method (PTDM) that separates cloud and drizzle using the Doppler spectra measurements without assuming any prior properties of cloud and drizzle. The advantage of PTDM is that it can estimate the signal properties in the time domain and can obtain the cloud and drizzle estimates simultaneously. Based on our radar signal simulations, the uncertainty in estimated power and velocity from PTDM are within 2 dB and 0.02 m s−1, respectively. We have also evaluated the PTDM algorithm using observations from the Atmospheric Radiation Measurement (ARM) Program W-band cloud radar in the Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP-MBL) campaign at the Azores in 2009–10. Two cases corresponding to light and moderate drizzling conditions are considered for the study. The statistics of the estimates obtained show that the PTDM method performs well in separating the cloud and drizzle returns. Finally, the estimated cloud and drizzle reflectivity from PTDM were used to retrieve their corresponding microphysical properties, showing that the retrieved liquid water path agrees to 25 g m−2 with the benchmark microwave method.

Corresponding author: Shashank S. Joshil, sjoshil@colostate.edu
Save