• Arnold, C. P., and C. H. Dey, 1986: Observing-systems simulation experiments: Past, present, and future. Bull. Amer. Meteor. Soc., 67, 687695, https://doi.org/10.1175/1520-0477(1986)067<0687:OSSEPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., E. Kalnay, and M. Halem, 1985: Impact of satellite temperature sounding and wind data on numerical weather prediction. Opt. Eng., 24, 242341, https://doi.org/10.1117/12.7973481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. J. Atmos. Sci., 63, 33833403, https://doi.org/10.1175/JAS3791.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barahona, D., A. Molod, J. Bacmeister, A. Nenes, A. Gettelman, H. Morrison, V. Phillips, and A. Eichmann, 2014: Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5). Geosci. Model Dev., 7, 17331766, https://doi.org/10.5194/gmd-7-1733-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carvalho, D., and W. McCarty, 2020: Position estimation of atmospheric motion vectors for observation system simulation experiments. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 54, 46 pp.

  • Chen, Y., F. Weng, Y. Han, and Q. Liu, 2008: Validation of the Community Radiative Transfer Model by using CloudSat data. J. Geophys. Res., 113, D00A03, https://doi.org/10.1029/2007JD009561.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Han, and F. Weng, 2012: Comparison of two transmittance algorithms in the Community Radiative Transfer Model: Application to AVHRR. J. Geophys. Res., 117, D06206, https://doi.org/10.1029/2011JD016656.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., S. D. Michele, and A. McNally, 2006: Diverse profile datasets from the ECMWF 91-level short-range forecasts. NWP SAF Tech. Rep. 10, 14 pp., https://www.ecmwf.int/node/8685.

  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, https://doi.org/10.1029/92JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeSouza-Machado, S. G., L. L. Strow, S. E. Hannon, H. E. Motteler, M. Lopez-Puertas, B. Funke, and D. P. Edwards, 2007: Fast forward radiative transfer modeling of 4.3 μm nonlocal thermodynamic equilibrium effects for infrared temperature sounders. Geophys. Res. Lett., 34, L01802, https://doi.org/10.1029/2006GL026684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, https://doi.org/10.1256/qj.05.108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diniz, F. L. R., and R. Todling, 2020: Assessing the impact of observations in a multi-year reanalysis. Quart. J. Roy. Meteor. Soc., 146, 724747, https://doi.org/10.1002/qj.3705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 16271648, https://doi.org/10.1175/1520-0469(1999)056<1627:SVPGIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., R. Yang, N. C. Privé, K.-S. Tai, R. Todling, M. E. Sienkiewicz, and J. Guo, 2013: Development and validation of observing-system simulation experiments at NASA’s Global Modeling and Assimilation Office. Quart. J. Roy. Meteor. Soc., 139, 11621178, https://doi.org/10.1002/qj.2027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., and Coauthors, 2017: Description of the GMAO OSSE for weather analysis software package: Version 3. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 48, 156 pp.

  • Errico, R. M., D. Carvalho, N. C. Privé, and M. Sienkiewicz, 2020: Simulation of atmospheric motion vectors for an observing system simulation experiment. J. Atmos. Oceanic Technol., 37, 489505, https://doi.org/10.1175/JTECH-D-19-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Y. Zhu, 2009: Examination of observation impacts derived from observing system experiments (OSEs) and adjoint models. Tellus, 61A, 179193, https://doi.org/10.1111/j.1600-0870.2008.00388.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2015: Evaluation of the 7-km GEOS-5 nature run. NASA Tech. Rep. Series on Global Modeling and Data Assimilation NASA/TM-2014-104606v36, Vol. 36, 305 pp.

  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, Y., P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, 2006: Community Radiative Transfer Model (CRTM): Version 1. NOAA Tech. Rep. NESDIS 122, 122 pp.

  • Hoffman, R. N., and R. Atlas, 2016: Future observing system simulation experiments. Bull. Amer. Meteor. Soc., 97, 16011616, https://doi.org/10.1175/BAMS-D-15-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holdaway, D., R. Errico, R. Gelaro, and J. G. Kim, 2014: Inclusion of linearized moist physics in NASA’s Goddard Earth Observing System data assimilation tools. Mon. Wea. Rev., 142, 414433, https://doi.org/10.1175/MWR-D-13-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Irion, F. W., and Coauthors, 2018: Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS. Atmos. Meas. Tech., 11, 971995, https://doi.org/10.5194/amt-11-971-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jedlovec, G. J., and R. J. Atkinson, 1998: The Marshall automated wind algorithm: Error analysis, quality control and climate applications. Fourth Int. Winds Workshop, Saanenmöser, Switzerland, EUMETSAT.

  • Jones, E., C. D. Barnet, Y. Ma, K. Garrett, K. Ide, and S.-A. Boukabara, 2020: Efforts to evaluate shortwave observations from the CrIS hyperspectral infrared instrument in the NOAA Global Data Assimilation System. 24th Conf. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, Boston, MA, Amer. Meteor. Soc., 5A.6, https://ams.confex.com/ams/2020Annual/webprogram/Paper368688.html.

  • Key, J. R., D. Santek, C. S. Velden, N. Bormann, J.-N. Thepaut, L. P. Riishojgaard, Y. Zhu, and W. P. Menzel, 2003: Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 482492, https://doi.org/10.1109/TGRS.2002.808238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009: Introduction of the GSI into the NCEP Global Data Assimilation System. Wea. Forecasting, 24, 16911705, https://doi.org/10.1175/2009WAF2222201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189201, https://doi.org/10.3402/tellusa.v56i3.14413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Marshall, J., N. Pescod, B. Seaman, G. Mills, and P. Stewart, 1994: An operational system for generating cloud drift winds in the Australian region and their impact on numerical weather prediction. Wea. Forecasting, 9, 361370, https://doi.org/10.1175/1520-0434(1994)009<0361:AOSFGC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maschhoff, K., J. Polizotti, H. Aumann, J. Susskind, D. Bowler, C. Gittins, M. Janelle, and S. Fingerman, 2019: Concept development and risk reduction for MISTiC winds, A micro-satellite constellation approach for vertically resolved wind and IR sounding observations in the troposphere. Remote Sens., 11, 2169, https://doi.org/10.3390/rs11182169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masters, D., and Coauthors, 2020: Status and accomplishments of the Spire Earth observing nanosatellite constellation. Proc. SPIE, 11530, 115300V, https://doi.org/10.1117/12.2574110.

    • Search Google Scholar
    • Export Citation
  • McCarty, W., G. Jedlovec, and T. L. Miller, 2009: Impact of the assimilation of Atmospheric Infrared Sounder radiance measurements on shortterm weather forecasts. J. Geophys. Res., 114, D18122, https://doi.org/10.1029/2008JD011626.

    • Search Google Scholar
    • Export Citation
  • McCarty, W., and Coauthors, 2016: MERRA-2 input observations: Summary and assessment. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA TM-2016-104606, Vol. 46, 51 pp.

  • McNally, A. P., J. C. Derber, W. Wu, and B. B. Katz, 2000: The use of TOVS level-1b radiances in the NCEP SSI analysis system. Quart. J. Roy. Meteor. Soc., 126, 689724, https://doi.org/10.1002/qj.49712656315.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., P. D. Watts, J. A. Smith, R. Engelen, G. A. Kelly, J. N. Thépaut, and M. Matricardi, 2006: The assimilation of AIRS radiance data at ECMWF. Quart. J. Roy. Meteor. Soc., 132, 935957, https://doi.org/10.1256/qj.04.171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S. T. Wanzong, C. S. Velden, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 11211133, https://doi.org/10.1175/1520-0477(1997)078<1121:FACDWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peubey, C., and A. P. McNally, 2009: Characterization of the impact of geostationary clear-sky radiances on wind analyses in a 4D-Var context. Quart. J. Roy. Meteor. Soc., 135, 18631876, https://doi.org/10.1002/qj.500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., and Coauthors, 2019: Quantitative assessment of state-dependent atmospheric motion vector uncertainties. J. Appl. Meteor. Climatol., 58, 24792495, https://doi.org/10.1175/JAMC-D-19-0166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. M. Errico, 2013: The role of model and initial condition error in numerical weather forecasting investigated with an observing system simulation experiment. Tellus, 65A, 21740, https://doi.org/10.3402/tellusa.v65i0.21740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. M. Errico, 2019: Uncertainty of observation impact estimation in an adjoint model investigated with an observing system simulation experiment. Mon. Wea. Rev., 147, 31913204, https://doi.org/10.1175/MWR-D-19-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., R. M. Errico, and K.-S. Tai, 2013a: Validation of the forecast skill of the Global Modeling and Assimilation Office observing system simulation experiment. Quart. J. Roy. Meteor. Soc., 139, 13541363, https://doi.org/10.1002/qj.2029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., R. M. Errico, and K.-S. Tai, 2013b: The influence of observation errors on analysis error and forecast skill investigated with an observing system simulation experiment. J. Geophys. Res. Atmos., 118, 53325346, https://doi.org/10.1002/jgrd.50452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., R. M. Errico, R. Todling, and A. El Akkraoui, 2021: Evaluation of adjoint-based observation impacts as a function of forecast length using an OSSE. Quart. J. Roy. Meteor. Soc., 147, 121138, https://doi.org/10.1002/qj.3909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 5578, https://doi.org/10.1016/j.jcp.2007.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2008: The GEOS-5 data assimilation system—Documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, Vol. 27, 109 pp.

  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruf, C., and Coauthors, 2013: The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) mission. 2013 IEEE Aerospace Conf., Big Sky, MT, IEEE, https://doi.org/10.1109/AERO.2013.6497202.

    • Crossref
    • Export Citation
  • Santek, D., S. Nebuda, and D. Stettner, 2019a: Demonstration and evaluation of 3D winds generated by tracking features in moisture and ozone fields derived from AIRS sounding retrievals. Remote Sens., 11, 2597, https://doi.org/10.3390/rs11222597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santek, D., and Coauthors, 2019b: 2018 atmospheric motion vector (AMV) intercomparison study. Remote Sens., 11, 2240, https://doi.org/10.3390/rs11192240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmetz, J., K. Holmlund, J. Hoffman, B. Strauss, B. Mason, V. Gaertner, A. Koch, and L. Van De Berg, 1993: Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteor., 32, 12061225, https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J., C. Barnet, and J. Blaisdell, 1998: Determination of atmospheric and surface parameters from simulated AIRS/AMSU/HSB sounding data: Retrieval and cloud clearing methodology. Adv. Space Res., 21, 369384, https://doi.org/10.1016/S0273-1177(97)00916-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and K. M. Bedka, 2009: Identifying the uncertainty in determining satellite-derived atmospheric motion vector height attribution. J. Appl. Meteor. Climatol., 48, 450463, https://doi.org/10.1175/2008JAMC1957.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173195, https://doi.org/10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002: Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev., 130, 29052916, https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12, 170184, https://doi.org/10.1175/1520-0442(1999)012<0170:EYOHCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., E. Eloranta, J. D. Spinhirne, and S. P. Palm, 2007: A comparison of cloud cover statistics from the GLAS lidar with HIRS. J. Climate, 20, 49684981, https://doi.org/10.1175/JCLI4269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. Gelaro, 2008: Observation sensitivity calculations using the adjoint of the Gridpoint Statistical Interpolation (GSI) analysis system. Mon. Wea. Rev., 136, 335351, https://doi.org/10.1175/MWR3525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 215 215 14
Full Text Views 110 110 9
PDF Downloads 144 144 19

Observing System Simulation Experiments Investigating Atmospheric Motion Vectors and Radiances from a Constellation of 4–5-μm Infrared Sounders

View More View Less
  • 1 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Universities Space Research Association, Columbia, Maryland
  • | 3 Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland
  • | 4 Morgan State University, Baltimore, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A set of observing system simulation experiments (OSSEs) was performed to investigate the utility of a constellation of passive infrared spectrometers, strategically designed with the aim of deriving the three-dimensional retrievals of the horizontal wind via atmospheric motion vectors (AMVs) from instruments with the spectral resolution of an infrared sounder. The instrument and constellation designs were performed in the context of the Midwave Infrared Sounding of Temperature and humidity in a Constellation for Winds (MISTiC Winds). The Global Modeling and Assimilation Office OSSE system, which includes a full suite of operational meteorological observations, served as the control. To illustrate the potential impact of this observing strategy, two experiments were performed by adding the new simulated observations to the control. First, perfect (error free) simulated AMVs and radiances were assimilated. Second, the data were made imperfect by adding realistic modeled errors to the AMVs and radiances that were assimilated. The experimentation showed beneficial impacts on both the mass and wind fields, as based on analysis verification, forecast verification, and the assessment of the observations using the forecast sensitivity to observation impact (FSOI) metric. In all variables and metrics, the impacts of the imperfect observations were smaller than those of the perfect observations, although much of the positive benefit was retained. The FSOI metric illustrated two key points. First, the largest impacts were seen in the middle troposphere AMVs, which is a targeted capability of the constellation strategy. Second, the addition of modeled errors showed that the assimilation system was unable to fully exploit the 4.3-μm carbon dioxide absorption radiances.

Current affiliation: Aveiro University, Aveiro, Portugal.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Will McCarty, will.mccarty@nasa.gov

Abstract

A set of observing system simulation experiments (OSSEs) was performed to investigate the utility of a constellation of passive infrared spectrometers, strategically designed with the aim of deriving the three-dimensional retrievals of the horizontal wind via atmospheric motion vectors (AMVs) from instruments with the spectral resolution of an infrared sounder. The instrument and constellation designs were performed in the context of the Midwave Infrared Sounding of Temperature and humidity in a Constellation for Winds (MISTiC Winds). The Global Modeling and Assimilation Office OSSE system, which includes a full suite of operational meteorological observations, served as the control. To illustrate the potential impact of this observing strategy, two experiments were performed by adding the new simulated observations to the control. First, perfect (error free) simulated AMVs and radiances were assimilated. Second, the data were made imperfect by adding realistic modeled errors to the AMVs and radiances that were assimilated. The experimentation showed beneficial impacts on both the mass and wind fields, as based on analysis verification, forecast verification, and the assessment of the observations using the forecast sensitivity to observation impact (FSOI) metric. In all variables and metrics, the impacts of the imperfect observations were smaller than those of the perfect observations, although much of the positive benefit was retained. The FSOI metric illustrated two key points. First, the largest impacts were seen in the middle troposphere AMVs, which is a targeted capability of the constellation strategy. Second, the addition of modeled errors showed that the assimilation system was unable to fully exploit the 4.3-μm carbon dioxide absorption radiances.

Current affiliation: Aveiro University, Aveiro, Portugal.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Will McCarty, will.mccarty@nasa.gov
Save