• Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Anthes, R., and et al. , 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313334, https://doi.org/10.1175/BAMS-89-3-313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danzer, J., U. Foelsche, B. Scherllin-Pirscher, and M. Schwärz, 2014: Influence of changes in humidity on dry temperature in GPS RO climatologies. Atmos. Meas. Tech., 7, 28832896, https://doi.org/10.5194/amt-7-2883-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. Meehl, C. Senior, B. Stevens, R. Stouffer, and K. Taylor, 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., M. Borsche, A. Steiner, A. Gobiet, B. Pirscher, G. Kirchengast, J. Wickert, and T. Schmidt, 2008: Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite. Climate Dyn., 31, 4965, https://doi.org/10.1007/s00382-007-0337-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foelsche, U., B. Scherllin-Pirscher, F. Ladstädter, A. Steiner, and G. Kirchengast, 2011: Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05%. Atmos. Meas. Tech., 4, 20072018, https://doi.org/10.5194/amt-4-2007-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fong, C., and et al. , 2008: FORMOSAT-3/COSMIC constellation spacecraft system performance: After one year in orbit. IEEE Trans. Geosci. Remote Sens., 46, 33803394, https://doi.org/10.1109/TGRS.2008.2005203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forbes, J., 1984: Middle atmosphere tides. J. Atmos. Sol.-Terr. Phys., 46, 10491067, https://doi.org/10.1016/0021-9169(84)90008-4.

  • Hagan, M., and J. Forbes, 2002: Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107, 4754, https://doi.org/10.1029/2001JD001236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagan, M., and J. Forbes, 2003: Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. Space Phys., 108, 1062, https://doi.org/10.1029/2002JA009466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hajj, G., E. Kursinski, L. Romans, W. Bertiger, and S. Leroy, 2002: A technical description of atmospheric sounding by GPS occultation. J. Atmos. Sol.-Terr. Phys., 64, 451469, https://doi.org/10.1016/S1364-6826(01)00114-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Kursinski, E., G. Hajj, J. Schofield, R. Linfield, and K. Hardy, 1997: Observing Earth’s atmosphere with radio occultation measurements using the global positioning system. J. Geophys. Res., 102, 23 42923 465, https://doi.org/10.1029/97JD01569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackner, B., A. Steiner, G. Kirchengast, and G. Hegerl, 2011: Atmospheric climate change detection by radio occultation data using a fingerprinting method. J. Climate, 24, 52755291, https://doi.org/10.1175/2011JCLI3966.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, S., 1997: Measurement of geopotential heights by GPS radio occultation. J. Geophys. Res., 102, 69716986, https://doi.org/10.1029/96JD03083.

  • Leroy, S., C. Ao, and O. Verkhoglyadova, 2012: Mapping GPS radio occultation data by Bayesian interpolation. J. Atmos. Oceanic Technol., 29, 10621074, https://doi.org/10.1175/JTECH-D-11-00179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKay, D., 1992: Bayesian interpolation. Neur. Comp., 4, 415447, https://doi.org/10.1162/neco.1992.4.3.415.

  • Pirscher, B., U. Foelsche, M. Borsche, G. Kirchengast, and Y. Kuo, 2010: Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data. J. Geophys. Res., 115, D14108, https://doi.org/10.1029/2009JD013008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., M. Fujiwara, X. Zhang, M. Hagan, and J. Forbes, 2012: Diurnal tides from the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets. J. Geophys. Res., 117, D13108, https://doi.org/10.1029/2011JD017117.

    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., M. Fujiwara, and M. Shiotani, 2018: Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations. Atmos. Chem. Phys., 18, 14371456, https://doi.org/10.5194/acp-18-1437-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schreiner, W., S. Sokolovskiy, D. Hunt, C. Rocken, and Y.-H. Kuo, 2011: Analysis of GPS radio occultation data from the FORMOSAT-3/COSMIC and MetOp/GRAS missions at CDAAC. Atmos. Meas. Tech., 4, 22552272, https://doi.org/10.5194/amt-4-2255-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., and et al. , 2020: Global stratospheric temperature bias and other stratospheric aspects of ERA5 and ERA5.1. European Centre for Medium-Range Weather Forecasts Tech. Rep. 859, 40 pp.

  • Steiner, A., B. Lackner, F. Ladstädter, B. Scherllin-Pirscher, U. Foelsche, and G. Kirchengast, 2011: GPS radio occultation for climate monitoring and change detection. Radio Sci., 46, RS0D24, https://doi.org/10.1029/2010RS004614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K., R. Stouffer, and G. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, J., D. Waliser, R. Ferraro, P. Gleckler, T. Lee, and G. Potter, 2014: Satellite observations for CMIP5: The genesis of Obs4MIPs. Bull. Amer. Meteor. Soc., 95, 13291334, https://doi.org/10.1175/BAMS-D-12-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verkhoglyadova, O., S. Leroy, and C. Ao, 2014: Estimation of winds from GPS radio occultations. J. Atmos. Oceanic Technol., 31, 24512461, https://doi.org/10.1175/JTECH-D-14-00061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Engeln, A., Y. Andres, C. Marquardt, and F. Sancho, 2011: GRAS radio occultation on-board of MetOp. Adv. Space Res., 47, 336347, https://doi.org/10.1016/j.asr.2010.07.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickert, J., and et al. , 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28, 32633266, https://doi.org/10.1029/2001GL013117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, F., D. Wu, and A. Mannucci, 2010: Atmospheric diurnal variations observed with GPS radio occultation soundings. Atmos. Chem. Phys., 10, 68896899, https://doi.org/10.5194/acp-10-6889-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 152 152 15
Full Text Views 28 28 1
PDF Downloads 37 37 2

Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data

View More View Less
  • 1 Atmospheric and Environmental Research, Lexington, Massachusetts
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, La Cañada Flintridge, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Bayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, thus enabling monthly mapping of radio occultation data in synoptic time and analysis of the atmospheric tides. The basis functions are spherical harmonics multiplied by sinusoids in the diurnal cycle up to arbitrary spherical harmonic degree and diurnal cycle harmonic. Bayesian interpolation requires a regularizer to impose smoothness on the fits it produces, thereby preventing the overfitting of data. In this work, a formulation for the regularizer is proposed and the most probable values of the parameters of the regularizer determined. Special care is required when obvious gaps in the sampling of the diurnal cycle are known to occur in order to prevent the false detection of statistically significant high-degree harmonics of the diurnal cycle in the atmosphere. Finally, this work probes the ability of Bayesian interpolation to generate a valid uncertainty analysis of the fit. The postfit residuals of Bayesian interpolation are dominated not by measurement noise but by unresolved variability in the atmosphere, which is statistically nonuniform across the globe, thus violating the central assumption of Bayesian interpolation. The problem is ameliorated by constructing maps of RO data using Bayesian interpolation that partially resolve the temporal variability of the atmosphere, constructing maps for approximately every 3 days of RO data.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen S. Leroy, sleroy@aer.com

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-11-00179.1 and http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-14-00061.1.

Abstract

Bayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, thus enabling monthly mapping of radio occultation data in synoptic time and analysis of the atmospheric tides. The basis functions are spherical harmonics multiplied by sinusoids in the diurnal cycle up to arbitrary spherical harmonic degree and diurnal cycle harmonic. Bayesian interpolation requires a regularizer to impose smoothness on the fits it produces, thereby preventing the overfitting of data. In this work, a formulation for the regularizer is proposed and the most probable values of the parameters of the regularizer determined. Special care is required when obvious gaps in the sampling of the diurnal cycle are known to occur in order to prevent the false detection of statistically significant high-degree harmonics of the diurnal cycle in the atmosphere. Finally, this work probes the ability of Bayesian interpolation to generate a valid uncertainty analysis of the fit. The postfit residuals of Bayesian interpolation are dominated not by measurement noise but by unresolved variability in the atmosphere, which is statistically nonuniform across the globe, thus violating the central assumption of Bayesian interpolation. The problem is ameliorated by constructing maps of RO data using Bayesian interpolation that partially resolve the temporal variability of the atmosphere, constructing maps for approximately every 3 days of RO data.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Stephen S. Leroy, sleroy@aer.com

This article has companion articles which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-11-00179.1 and http://journals.ametsoc.org/doi/abs/10.1175/JTECH-D-14-00061.1.

Save