• Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka, 2005: Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models. J. Appl. Meteor., 44, 8851895, https://doi.org/10.1175/JAM2308.1.

    • Search Google Scholar
    • Export Citation
  • Bernauer, F., K. Hürkamp, W. Rühm, and J. Tschiersch, 2016: Snow event classification with a 2D video disdrometer—A decision tree approach. Atmos. Res., 172–173, 186195, https://doi.org/10.1016/j.atmosres.2016.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., J. Niu, P. Yang, J. A. Kankiewicz, V. E. Larson, and T. H. Vonder Haar, 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47, 24872495, https://doi.org/10.1175/2008JAMC1885.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and Coauthors, 2007: An intercomparison of microphysical retrieval algorithms for upper-tropospheric ice clouds. J. Climate Appl. Meteor., 88, 191204, https://doi.org/10.1175/BAMS-88-2-191.

    • Search Google Scholar
    • Export Citation
  • Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 2009: ImageNet: A large-scale hierarchical image database. 2009 IEEE Conf. on Computer Vision and Pattern Recognition, Miami, FL, IEEE, 248–255, https://doi.org/10.1109/CVPR.2009.5206848.

    • Crossref
    • Export Citation
  • Feind, R. E., 2008: Comparison of three classification methodologies for 2D Probe hydrometeor images obtained from the armored T-28 aircraft. South Dakota School of Mines and Technology Institute of Atmospheric Sciences Rep. SDSMT/IAS/R08-01, 61 pp.

  • Field, P. R., A. J. Heymsfield, B. J. Shipway, P. J. DeMott, K. A. Pratt, D. C. Rogers, J. Stith, and K. A. Prather, 2012: Ice in Clouds Experiment–Layer Clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds. J. Atmos. Sci., 69, 10661079, https://doi.org/10.1175/JAS-D-11-026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., C. Fallgatter, K. Shkurko, and D. Howlett, 2012: Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall. Atmos. Meas. Tech., 5, 26252633, https://doi.org/10.5194/amt-5-2625-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazioli, J., D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne, 2014: Hydrometeor classification from two-dimensional video disdrometer data. Atmos. Meas. Tech., 7, 28692882, https://doi.org/10.5194/amt-7-2869-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, K., X. Zhang, S. Ren, and J. Sun, 2015: Deep residual learning for image recognition. arXiv, https://arxiv.org/abs/1512.03385.

    • Crossref
    • Export Citation
  • Heymsfield, A. J., and C. Westbrook, 2010: Advances in the estimation of ice particle fall speeds using laboratory and field measurements. J. Atmos. Sci., 67, 24692482, https://doi.org/10.1175/2010JAS3379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye, W. Hall, and T. Grainger, 2002a: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Lewis, A. Bansemer, J. Iaquinta, L. M. Miloshevich, M. Kajikawa, C. Twohy, and M. R. Poellot, 2002b: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, https://doi.org/10.1175/1520-0469(2002)059%3C0003:AGAFDT%3E2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, G. van Zadelhoff, M. McGill, C. Twohey, and D. Baumgardner, 2006: Effective radius of ice cloud particle populations derived from aircraft probes. J. Atmos. Oceanic Technol., 23, 361380, https://doi.org/10.1175/JTECH1857.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hicks, A., and B. M. Notaroš, 2019: Method for classification of snowflakes based on images by a Multi-Angle Snowflake Camera using convolutional neural networks. J. Atmos. Oceanic Technol., 36, 22672282, https://doi.org/10.1175/JTECH-D-19-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., 1987: Some techniques and uses of 2D-C habit classification for snow particles. J. Atmos. Oceanic Technol., 4, 498511, https://doi.org/10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y., and G. Liu, 2015: The characteristics of ice cloud properties derived from CloudSat and CALIPSO measurements. J. Climate, 28, 38803901, https://doi.org/10.1175/JCLI-D-14-00666.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, Q., Z. Jiang, L. Yuan, M. Cheng, S. Yan, and J. Feng, 2021: Vision permutator: A permutable MLP-like architecture for visual recognition. arXiv, https://arxiv.org/abs/2106.12368.

    • Crossref
    • Export Citation
  • Houze, R. J., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, G., Z. Liu, and K. Q. Weinberger, 2016: Densely connected convolutional networks. arXiv, https://arxiv.org/abs/1608.06993.

    • Crossref
    • Export Citation
  • Huang, L., J. H. Jiang., Z. Wang, H. Su, M. Deng, and S. Massie, 2015: Climatology of cloud water content associated with different cloud types observed by A‐Train satellites. J. Geophys. Res. Atmos., 120, 41964212, https://doi.org/10.1002/2014JD022779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunter, H. E., R. M. Dyer, and M. Glass, 1984: A two-dimensional hydrometeor machine classifier derived from observed data. J. Atmos. Oceanic Technol., 1, 2836, https://doi.org/10.1175/1520-0426(1984)001<0028:ATDHMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacobellis, S. F., G. M. McFarquhar, D. L. Mitchell, and R. C. J. Somerville, 2003: The sensitivity of radiative fluxes to parameterized cloud microphysics. J. Climate, 16, 29792996, https://doi.org/10.1175/1520-0442(2003)016<2979:TSORFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaac, G. , and Coauthors, 2005: First results from the Alliance Icing Research Study II. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA, https://doi.org/10.2514/6.2005-252.

    • Crossref
    • Export Citation
  • Jensen, E., and Coauthors, 2005: Formation of a tropopause cirrus layer observed over Florida during CRYSTAL‐FACE. J. Geophys. Res., 110, D03208, https://doi.org/10.1029/2004JD004671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E., and Coauthors, 2017: The NASA Airborne Tropical Tropopause Experiment: High-altitude aircraft measurements in the tropical western Pacific. Bull. Amer. Meteor. Soc., 98, 129143, https://doi.org/10.1175/BAMS-D-14-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). J. Atmos. Sci., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Search Google Scholar
    • Export Citation
  • Knollenberg, R. G., 1972: Measurements of the growth of the ice budget in a persisting contrail. J. Atmos. Sci., 29, 13671374, https://doi.org/10.1175/1520-0469(1972)029<1367:MOTGOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and G. Isaac, 2003: Roundness and aspect ratio of particles in ice clouds. J. Atmos. Sci., 60, 17951808, https://doi.org/10.1175/1520-0469(2003)060<1795:RAAROP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., G. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902, https://doi.org/10.1002/qj.49712656913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krizhevsky, A., I. Sutskever, and G. E. Hinton, 2012: Imagenet classification with deep convolutional neural networks. 25th Conf. on Neural Information Processing Systems, Lake Tahoe, NV, NeurIPS, 10971105, https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

    • Search Google Scholar
    • Export Citation
  • Laborde, M., and A. M. Oberman, 2020: Nesterov’s method with decreasing learning rate leads to accelerated stochastic gradient descent. arXiv, https://arxiv.org/abs/1908.07861.

  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, https://doi.org/10.5194/amt-4-1361-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and B. A. Baker, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part II: Applications to collected data. J. Appl. Meteor. Climatol., 45, 12911303, https://doi.org/10.1175/JAM2399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., B. A. Baker, P. Zmarzly, Q. M. D. O’Connor, J.-F. Gayet, and V. Shcherbakov, 2006a: Microphysical and optical properties of atmospheric ice crystals at South Pole station. J. Appl. Meteor. Climatol., 45, 15051524, https://doi.org/10.1175/JAM2421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, and H. Jonsson, 2006b: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindqvist, H., K. Muinonen, T. Nousiainen, J. Um, G. M. McFarquhar, P. Haapanala, R. Makkonen, and H. Hakkarainen, 2012: Ice‐cloud particle habit classification using principal components. J. Geophys. Res., 117, D16206, https://doi.org/10.1029/2012JD017573.

    • Search Google Scholar
    • Export Citation
  • Liou, K. N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, https://doi.org/10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marr, B., 2019: Deep learning vs neural networks—What’s the difference? Bernard Marr and Co., https://bernardmarr.com/default.asp?contentID=1789.

  • Mason, B. J., 1994: The shapes of snow crystals—Fitness for purpose? Quart. J. Roy. Meteor. Soc., 120, 849860, https://doi.org/10.1002/qj.49712051805.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, A. Macke, J. Iaquinta, and S. M. Aulenbach, 1999: Use of observed ice crystal sizes and shapes to calculate mean‐scattering properties and multispectral radiances: CEPEX April 4, 1993, case study. J. Geophys. Res., 104, 31 76331 779, https://doi.org/10.1029/1999JD900802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, https://doi.org/10.1175/JAMC-D-12-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishchenko, M., 1996: Sensitivity of cirrus cloud albedo, bidirectional reflectance and optical thickness retrieval accuracy to ice particle shape. J. Geophys. Res., 101, 16 97316 985, https://doi.org/10.1029/96JD01155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mordvintsev, A., 2013: Canny edge detection. Stratton Park Engineering Company, https://opencv24-python-tutorials.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html.

  • Moss, S. J., and D. W. Johnson, 1994: Aircraft measurements to validate and improve numerical model parameterization of ice to water ratios in clouds. Atmos. Res., 34, 125, https://doi.org/10.1016/0169-8095(94)90078-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Shea, S. J., and Coauthors, 2016: Airborne observations of the microphysical structure of two contrasting cirrus clouds. J. Geophys. Res. Atmos., 121, 13 51013 536, https://doi.org/10.1002/2016JD025278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paszke, A., A. Chaurasia, S. Kim, and E. Culurciello, 2016: ENet: A deep neural network architecture for real-time semantic segmentation. arXiv, https://arxiv.org/abs/1606.02147.

  • Pedregosa, F. , and Coauthors, 2011: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12, 28252830.

  • Praz, C., Y.-A. Roulet, and A. Berne, 2017: Solid hydrometeor classification and riming degree estimation from pictures collected with a Multi-Angle Snowflake Camera. J. Atmos. Meas. Tech., 10, 13351357, https://doi.org/10.5194/amt-10-1335-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praz, C., S. Ding, G. M. McFarquhar, and A. Berne, 2018: A versatile method for ice particle habit classification using airborne imaging probe data. J. Geophys. Res. Atmos., 123, 13 47213 495, https://doi.org/10.1029/2018JD029163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Protat, A., and C. R. Williams, 2011: The accuracy of radar estimates of ice terminal fall speed from vertically pointing Doppler radar measurements. J. Appl. Meteor. Climatol., 50, 21202138, https://doi.org/10.1175/JAMC-D-10-05031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2014: Observational quantification of the separation of simple and complex atmospheric ice particles. Geophys. Res. Lett., 41, 13011307, https://doi.org/10.1002/2013GL058781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., M. Schnaiter, A. J. Heymsfield, P. Yang, E. Hirst, and A. Bansemer, 2016: The microphysical properties of small ice particles measured by the Small Ice Detector-3 probe during the MACPEX field campaign. J. Atmos. Sci., 73, 47754791, https://doi.org/10.1175/JAS-D-16-0126.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharma, N., V. Jain, and A. Mishra, 2018: An analysis of convolutional neural networks for image classification. Proc. Comput. Sci., 132, 377384, https://doi.org/10.1016/j.procs.2018.05.198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonyan, K., and A. Zisserman, 2014: Very deep convolutional networks for large-scale image recognition. arXiv, https://arxiv.org/abs/1409.1556.

    • Search Google Scholar
    • Export Citation
  • SPEC, 2012a: 3V-CPI Combination Cloud Particle Probe. Stratton Park Engineering Company (SPEC, Inc.), http://www.specinc.com/3v-cpi-combo.

  • SPEC, 2012b: Cloud Particle Imager (CPI). Stratton Park Engineering Company (SPEC, Inc.), http://www.specinc.com/cloud-particle-imager.

  • SPEC, 2012c: CPIview QuickLook and eXtractor CPI data processing software. Stratton Park Engineering Company (SPEC, Inc.) Doc., 33 pp., http://www.specinc.com/sites/default/files/software_and_manuals/CPI_Post%20Processing%20Software%20Manual_rev1.2_20120116.pdf.

  • Stephens, G. L., S. C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of microphysical and radiative properties of cirrus clouds to climate and climate feedback. J. Appl. Meteor., 47, 17421754, https://doi.org/10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, W., Y. Hu, B. Lin, Z. Liu, and G. Videen, 2011: The impact of ice cloud particle microphysics on the uncertainty of ice water content retrievals. J. Quant. Spectrosc. Radiat. Transfer, 112, 189196, https://doi.org/10.1016/j.jqsrt.2010.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Z., and K. P. Shine, 1994: Studies of the radiative properties of ice and mixed‐phase clouds. Quart. J. Roy. Meteor. Soc., 120, 111137, https://doi.org/10.1002/qj.49712051508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tagg, B. A., 2021: Cloud Particle Imager (CPI). NASA Airborne Science Program, https://airbornescience.nasa.gov/instrument/CPI.

  • Takano, Y., and K. N. Liou, 1989: Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 319, https://doi.org/10.1175/1520-0469(1989)046<0003:SRTICC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torchvision, 2019: Torchvision models. PyTorch, https://pytorch.org/vision/stable/models.html.

  • Touloupas, G., A. Lauber, J. Henneberger, and A. Beck, 2020: A convolutional neural network for classifying cloud particles recorded by imaging probes. Atmos. Meas. Tech., 13, 22192239, https://doi.org/10.5194/amt-13-2219-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinde, and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment. Bull. Amer. Meteor. Soc., 88, 205222, https://doi.org/10.1175/BAMS-88-2-205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. H., P. Minnis, M. P. McCormick, G. S. Kent, K. M. Skeens, 1996: A 6‐year climatology of cloud occurrence frequency from Stratospheric Aerosol and Gas Experiment II observations (1985–1990). J. Geophys. Res., 101, 29 40729 429, https://doi.org/10.1029/96jd01780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witten, I. H., E. Frank, M. A. Hall, and C. J. Pal, 2016: Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. Morgan Kaufmann, 621 pp.

  • Wu, Z., and Coauthors, 2020: Neural network classification of ice-crystal images observed by an airborne Cloud Imaging Probe. Atmos.–Ocean, 58, 303315, https://doi.org/10.1080/07055900.2020.1843393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 30213031, https://doi.org/10.1175/JCLI3461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and R. Goodacre, 2018: On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test., 2, 249262, https://doi.org/10.1007/s41664-018-0068-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, W., K. Yang, Y. Bai, T. Xiao, H. Yao, and Y. Rui, 2016: Visualizing and comparing AlexNet and VGG using deconvolutional layers. Proc. 33rd Int. Conf. on Machine Learning, New York, NY, JMLR, https://icmlviz.github.io/icmlviz2016/assets/papers/4.pdf.

All Time Past Year Past 30 Days
Abstract Views 371 367 63
Full Text Views 108 108 7
PDF Downloads 125 125 9

Classification of Cloud Particle Imagery from Aircraft Platforms Using Convolutional Neural Networks

View More View Less
  • 1 aUniversity at Albany, State University of New York, Albany, New York
  • | 2 bNational Center for Atmospheric Research, Boulder, Colorado
  • | 3 cUniversity of Wyoming, Laramie, Wyoming
Restricted access

Abstract

A vast amount of ice crystal imagery exists from a variety of field campaign initiatives that can be utilized for cloud microphysical research. Here, nine convolutional neural networks are used to classify particles into nine regimes on over 10 million images from the Cloud Particle Imager probe, including liquid and frozen states and particles with evidence of riming. A transfer learning approach proves that the Visual Geometry Group (VGG-16) network best classifies imagery with respect to multiple performance metrics. Classification accuracies on a validation dataset reach 97% and surpass traditional automated classification. Furthermore, after initial model training and preprocessing, 10 000 images can be classified in approximately 35 s using 20 central processing unit cores and two graphics processing units, which reaches real-time classification capabilities. Statistical analysis of the classified images indicates that a large portion (57%) of the dataset is unusable, meaning the images are too blurry or represent indistinguishable small fragments. In addition, 19% of the dataset is classified as liquid drops. After removal of fragments, blurry images, and cloud drops, 38% of the remaining ice particles are largely intersecting the image border (≥10% cutoff) and therefore are considered unusable because of the inability to properly classify and dimensionalize. After this filtering, an unprecedented database of 1 560 364 images across all campaigns is available for parameter extraction and bulk statistics on specific particle types in a wide variety of storm systems, which can act to improve the current state of microphysical parameterizations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Schmitt’s current affiliation: University of Alaska Fairbanks, Fairbanks, Alaska.

Corresponding author: Vanessa Przybylo, vprzybylo@albany.edu

Abstract

A vast amount of ice crystal imagery exists from a variety of field campaign initiatives that can be utilized for cloud microphysical research. Here, nine convolutional neural networks are used to classify particles into nine regimes on over 10 million images from the Cloud Particle Imager probe, including liquid and frozen states and particles with evidence of riming. A transfer learning approach proves that the Visual Geometry Group (VGG-16) network best classifies imagery with respect to multiple performance metrics. Classification accuracies on a validation dataset reach 97% and surpass traditional automated classification. Furthermore, after initial model training and preprocessing, 10 000 images can be classified in approximately 35 s using 20 central processing unit cores and two graphics processing units, which reaches real-time classification capabilities. Statistical analysis of the classified images indicates that a large portion (57%) of the dataset is unusable, meaning the images are too blurry or represent indistinguishable small fragments. In addition, 19% of the dataset is classified as liquid drops. After removal of fragments, blurry images, and cloud drops, 38% of the remaining ice particles are largely intersecting the image border (≥10% cutoff) and therefore are considered unusable because of the inability to properly classify and dimensionalize. After this filtering, an unprecedented database of 1 560 364 images across all campaigns is available for parameter extraction and bulk statistics on specific particle types in a wide variety of storm systems, which can act to improve the current state of microphysical parameterizations.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Schmitt’s current affiliation: University of Alaska Fairbanks, Fairbanks, Alaska.

Corresponding author: Vanessa Przybylo, vprzybylo@albany.edu
Save