Abstract
A one-dimensional local spline smoothing technique is applied to Omega navigational signals for the purpose of windfinding. Wind profiles so produced depend largely on two parameters of the smoothing procedure: the nodal spacing, which determines the smallest resolvable scale, and a filtering wavelength, which produces the necessary smoothing of the phase data, and prevents representational distortion of any power from the unresolved scales. Phase “noise” from stationary test sondes is superimposed on synthetic Omega signals to compare wind profiles obtained with this new procedure with profiles computed using other techniques.
Is it shown that the effect of aircraft maneuvers on Omega wind accuracy is not completely removed by the normal practice of evaluating all phase derivatives at a common time. Additional improvements in accuracy of 2–3 m s−1 can be obtained by a “rate-aiding” technique using aircraft navigational data.