Objective Method for Analysis and Tracking of Convective Cells as Seen by Radar

Daniel Rosenfeld Department of Atmospheric Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Daniel Rosenfeld in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

A special method has been developed for the study of cells that are embedded in convective rain systems. This method consists of a package of computer programs that use pattern recognition techniques on three-dimensional digital radar data to identify the rain cells, track them with time, and calculate their properties. The product of the computations is a comprehensive database of physically meaningful properties of rain cells, which can be used to infer the internal structure and the dynamics of convective rain systems.

The cell-tracking method has been applied to the summer convective clouds of south Florida for the following purposes: (i) derivation of the relationship between the echo top height and the precipitation characteristics (e.g., area, water yield, rain intensity and duration of the rain cells); (ii) study of the microphysical behavior of cumulus clouds in relation to their cell properties; (iii) evaluation of the effect of seeding on cumulus clouds on the cell scale; and (iv) examination of cloud-to-ground lightning discharges in relation to convective cell intensity.

The cell-tracking method is also currently being used in rain enhancement projects in Texas in the United States, in Israel and in South Africa. The cell-tracking method, its products and their use in meteorological research are described in this paper.

Abstract

A special method has been developed for the study of cells that are embedded in convective rain systems. This method consists of a package of computer programs that use pattern recognition techniques on three-dimensional digital radar data to identify the rain cells, track them with time, and calculate their properties. The product of the computations is a comprehensive database of physically meaningful properties of rain cells, which can be used to infer the internal structure and the dynamics of convective rain systems.

The cell-tracking method has been applied to the summer convective clouds of south Florida for the following purposes: (i) derivation of the relationship between the echo top height and the precipitation characteristics (e.g., area, water yield, rain intensity and duration of the rain cells); (ii) study of the microphysical behavior of cumulus clouds in relation to their cell properties; (iii) evaluation of the effect of seeding on cumulus clouds on the cell scale; and (iv) examination of cloud-to-ground lightning discharges in relation to convective cell intensity.

The cell-tracking method is also currently being used in rain enhancement projects in Texas in the United States, in Israel and in South Africa. The cell-tracking method, its products and their use in meteorological research are described in this paper.

Save