Retrieval of Nonprecipitating Liquid Water Cloud Parameters from Microwave Data: A Simulation Study

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison Madison, Wisconsin
© Get Permissions
Full access

Abstract

A new microwave algorithm, analogous to the infrared “radiance-ratioing” method (Eyre and Menzel 1989) is developed to retrieve the height and “effective” fraction (defined as the product of the emissivity times the actual physical fractional coverage) of nonprecipitating water clouds using various pairs of the 20 microwave channels planned for the Advanced Microwave Sounding Unit (AMSU), an instrument slated to fly on polar-orbiting satellites beginning in 1994. The results of a simulation study are presented to provide some insights into the potentials of this technique using different AMSU channel combinations. This study suggests that the use of the oxygen channels 3 and 5 and water vapor channels 19 and 20 will produce the most accurate retrievals of liquid water cloud parameters and the highest percentage of good-quality retrievals over a range of meteorological and cloud conditions. The use of channels 1, 2, 16, and 17, which all may have a strong surface component in their measured brightness temperature, does not give optimal results chiefly because the large uncertainties in the microwave surface temperature and emissivity obscure the brightness–temperature signatures of cloud liquid water. As with the infrared radiance ratioing method (and similar C02 slicing techniques), the best retrieval of cloud parameters is for high cloud, with poorer results for those at middle and low levels.

Abstract

A new microwave algorithm, analogous to the infrared “radiance-ratioing” method (Eyre and Menzel 1989) is developed to retrieve the height and “effective” fraction (defined as the product of the emissivity times the actual physical fractional coverage) of nonprecipitating water clouds using various pairs of the 20 microwave channels planned for the Advanced Microwave Sounding Unit (AMSU), an instrument slated to fly on polar-orbiting satellites beginning in 1994. The results of a simulation study are presented to provide some insights into the potentials of this technique using different AMSU channel combinations. This study suggests that the use of the oxygen channels 3 and 5 and water vapor channels 19 and 20 will produce the most accurate retrievals of liquid water cloud parameters and the highest percentage of good-quality retrievals over a range of meteorological and cloud conditions. The use of channels 1, 2, 16, and 17, which all may have a strong surface component in their measured brightness temperature, does not give optimal results chiefly because the large uncertainties in the microwave surface temperature and emissivity obscure the brightness–temperature signatures of cloud liquid water. As with the infrared radiance ratioing method (and similar C02 slicing techniques), the best retrieval of cloud parameters is for high cloud, with poorer results for those at middle and low levels.

Save