All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 25 4
PDF Downloads 31 13 3

The Fall Rate of the T-7 XBT

Zachariah R. HallockNaval Oceanographic and Atmospheric Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by Zachariah R. Hallock in
Current site
Google Scholar
PubMed
Close
and
William J. TeagueNaval Oceanographic and Atmospheric Research Laboratory, Stennis Space Center, Mississippi

Search for other papers by William J. Teague in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

A theoretical model of expendable bathythermograph (XBT) fall rate is reviewed, and a new form of fall-rate equation is proposed to include new-surface transient effects. Comparisons are made of T-7 XBT and CTD (conductivity, temperature, and depth) depths of thermohaline features off Barbados. Fall-rate equation coefficients are derived and compared with the manufacturer-supplied coefficients. As other investigators have found, the Sippican equation consistently underestimates probe depth by as much as 35 m at 760 m. Analysis yields a new equation, Z=6.798t−0.002383t 2−4.01, for depths greater than about 10 m. Considerable probe-to-probe variability is noted and is found to be primarily the result of differences in the linear term or terminal velocity of the probes; variation in effective drag resulting from probe irregularities is the likely cause. Recommendations for additional work are made.

Abstract

A theoretical model of expendable bathythermograph (XBT) fall rate is reviewed, and a new form of fall-rate equation is proposed to include new-surface transient effects. Comparisons are made of T-7 XBT and CTD (conductivity, temperature, and depth) depths of thermohaline features off Barbados. Fall-rate equation coefficients are derived and compared with the manufacturer-supplied coefficients. As other investigators have found, the Sippican equation consistently underestimates probe depth by as much as 35 m at 760 m. Analysis yields a new equation, Z=6.798t−0.002383t 2−4.01, for depths greater than about 10 m. Considerable probe-to-probe variability is noted and is found to be primarily the result of differences in the linear term or terminal velocity of the probes; variation in effective drag resulting from probe irregularities is the likely cause. Recommendations for additional work are made.

Save