• Ashkezari, M. D., C. N. Hill, C. N. Follett, G. Forget, and M. J. Follows, 2016: Oceanic eddy detection and lifetime forecast using machine learning methods. Geophys. Res. Lett., 43, 12 23412 241, https://doi.org/10.1002/2016GL071269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, S., J. L. Su, Z. J. Gan, and Q. Y. Liu, 2002: The numerical study of the South China Sea upper circulation characteristics and its dynamic mechanism, in winter. Cont. Shelf Res., 22, 22472264, https://doi.org/10.1016/S0278-4343(02)00073-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., A. Gizolme, and C. Grados, 2008: Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79, 106119, https://doi.org/10.1016/j.pocean.2008.10.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaigneau, A., G. Eldin, and B. Dewitte, 2009: Eddy activity in the four major upwelling systems from satellite altimetry (1992-2007). Prog. Oceanogr., 83, 117123, https://doi.org/10.1016/j.pocean.2009.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216, https://doi.org/10.1016/j.pocean.2011.01.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, Q. Zhang, and X. Chu, 2010: The eddy pair off eastern Vietnam: Interannual variability and impact on thermohaline structure. Cont. Shelf Res., 30, 715723, https://doi.org/10.1016/j.csr.2009.11.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., Y. Hou, and X. Chu, 2011: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116, C06018, https://doi.org/10.1029/2010JC006716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., H. Xue, Y. Qi, G. Chen, Q. Mao, D. Wang, and F. Chai, 2014: An exceptional anticyclonic eddy in the South China Sea in 2010. J. Geophys. Res. Oceans, 119, 881897, https://doi.org/10.1002/2013JC009314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, X., G. Chen, and Y. Qi, 2020: Periodic mesoscale eddies in the South China Sea. J. Geophys. Res. Oceans, 125, e2019JC015139, https://doi.org/10.1029/2019JC015139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doglioli, A. M., B. Blanke, S. Speich, and G. Lapeyre, 2007: Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies. J. Geophys. Res., 112, C05043, https://doi.org/10.1029/2006JC003952.

    • Search Google Scholar
    • Export Citation
  • Dong, C., J. C. McWilliams, Y. Liu, and D. Chen, 2014: Global heat and salt transports by eddy movement. Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duo, Z., W. Wang, and H. Wang, 2019: Oceanic mesoscale eddy detection method based on deep learning. Remote Sens., 11, 1921, https://doi.org/10.3390/rs11161921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faghmous, J. H., I. Frenger, Y. S. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., M. Muennich, N. Gruber, and R. Knutti, 2015: Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans, 120, 74137449, https://doi.org/10.1002/2015JC011047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., 1997: Warm eddy in the open sea east of Hainan Island [in Chinese with English abstract]. Huang-Bohai Haiyang, 4, 17.

  • He, Q., H. Zhan, S. Cai, Y. He, G. Huang, and W. Zhan, 2018: A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports. J. Geophys. Res. Oceans, 123, 49064929, https://doi.org/10.1029/2018JC014054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henson, S. A., and A. C. Thomas, 2008: A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep-Sea Res. I, 55, 163176, https://doi.org/10.1016/j.dsr.2007.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Q. Z., W. Z. Wang, Y. S. Li, C. W. Li, and M. Mao, 1992: General situations of the current and eddy in the South China Sea [in Chinese with English abstract]. Adv. Earth Sci., 7, 19.

    • Search Google Scholar
    • Export Citation
  • Jia, Y. L., and Q. Y. Liu, 2004: Eddy shedding from the Kuroshio bend at Luzon Strait. J. Oceanogr., 60, 10631069, https://doi.org/10.1007/s10872-005-0014-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, Y., H. Zhou, J. Yang, Y. Zeng, and B. Wen, 2017: Submesoscale eddies in the Taiwan Strait observed by high-frequency radars: Detection algorithms and eddy properties. J. Atmos. Oceanic Technol., 34, 939953, https://doi.org/10.1175/JTECH-D-16-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lguensat, R., M. Sun, R. Fablet, E. Mason, P. Tandeo, and G. Chen, 2018: EddyNet: A deep neural network for pixel-wise classification of oceanic eddies. 2018 IEEE Int. Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 1764–1767, https://doi.org/10.1109/IGARSS.2018.8518411.

    • Crossref
    • Export Citation
  • Li, J., T. Zu, L. Zeng, T. Li, J. Chen, and J. Yao, 2015: Preliminary analysis of the intraseasonal air-sea interaction influenced by Xisha warm eddy. Aquat. Ecosyst. Health Manage., 18, 386393, https://doi.org/10.1080/14634988.2015.1106909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., 2002: Advance in observation studies of upper layer circulation of the South China Sea [in Chinese with English abstract]. Taiwan Haixia, 21, 114125.

    • Search Google Scholar
    • Export Citation
  • Lian, Z., B. Sun, Z. Wei, Y. Wang, and X. Wang, 2019: Comparison of eight detection algorithms for the quantification and characterization of mesoscale eddies in the South China Sea. J. Atmos. Oceanic Technol., 36, 13611380, https://doi.org/10.1175/JTECH-D-18-0201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., C. Dong, D. Chen, Y. Liu, J. Yang, B. Zou, and Y. Guan, 2015: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep-Sea Res. I, 99, 4664, https://doi.org/10.1016/j.dsr.2015.01.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., C. Dong, Y. Guan, D. Chen, J. McWilliams, and F. Nencioli, 2012: Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. I, 68, 5467, https://doi.org/10.1016/j.dsr.2012.06.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, F., H. Xue, P. Xiu, F. Chai, M. Shi, and P. Guo, 2011: Oceanic eddy formation and propagation southwest of Taiwan. J. Geophys. Res., 116, C12045, https://doi.org/10.1029/2011JC007386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nencioli, F., C. Dong, T. Dickey, L. Washburn, and J. C. McWilliams, 2010: A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. J. Atmos. Oceanic Technol., 27, 564579, https://doi.org/10.1175/2009JTECHO725.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep-Sea Res., 17, 445454, https://doi.org/10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Penven, P., V. Echevin, J. Pasapera, F. Colas, and J. Tam, 2005: Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: A modeling approach. J. Geophys. Res., 110, C10021, https://doi.org/10.1029/2005JC002945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, and H. Sasaki, 2006: South China Sea throughflow: A heat and freshwater conveyor. Geophys. Res. Lett., 33, L23617, https://doi.org/10.1029/2006GL028350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadarjoen, I. A., and F. H. Post, 2000: Detection, quantification, and tracking of vortices using streamline geometry. Comput. Graphics, 24, 333341, https://doi.org/10.1016/S0097-8493(00)00029-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, F., Y. Luo, and L. Xu, 2018: Volume and transport of eddy-trapped mode water south of the Kuroshio Extension. J. Geophys. Res. Oceans, 123, 87498761, https://doi.org/10.1029/2018JC014176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, J. M. A. C., C. B. Montegut, and P. Y. Le Traon, 2011: Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci., 7, 317334, https://doi.org/10.5194/os-7-317-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, J., J. P. Xu, S. Q. Cai, and Q. Wang, 1999: Gyres and eddies in the South China Sea [in Chinese with English abstract]. Onset and Evolution of the South China Sea Monsoon and Its Interaction With the Ocean, China Meteorological Press, 272–279.

  • Sun, W. J., C. M. Dong, W. Tan, Y. Liu, Y. J. He, and J. Wang, 2018: Vertical structure anomalies of oceanic eddies and eddy-induced transports in the South China Sea. Remote Sens., 10, 795, https://doi.org/10.3390/rs10050795.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., H. Xu, J. Lin, and J. Hu, 2008: Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. J. Oceanogr., 64, 925935, https://doi.org/10.1007/s10872-008-0076-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., J. L. Su, and P. C. Chu, 2003: Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett., 30, 2121, https://doi.org/10.1029/2003GL018532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., D. Chen, and J. Su, 2006: Generation and life cycle of the dipole in the South China Sea summer circulation. J. Geophys. Res., 111, C06002, https://doi.org/10.1029/2005JC003314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Du, J. Yi, N. Wang, and F. Liang, 2020: Mining evolution patterns from complex trajectory structures—A case study of mesoscale eddies in the South China Sea. ISPRS Int. J. Geoinf., 9, 441, https://doi.org/10.3390/ijgi9070441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., L. Zeng, W. Zhou, Q. Xie, S. Cai, J. Yao, and D. Wang, 2015: Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. J. Geophys. Res. Oceans, 120, 517532, https://doi.org/10.1002/2014JC009814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., W. Li, Y. Qi, and G. Han, 2012: Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait. Deep-Sea Res. I, 61, 2133, https://doi.org/10.1016/j.dsr.2011.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in 2-dimensional hydrodynamics. Physica D, 48, 273294, https://doi.org/10.1016/0167-2789(91)90088-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., L. Magaard, and J. Hager, 1976: Eddy energy in oceans. J. Geophys. Res., 81, 26412646, https://doi.org/10.1029/JC081i015p02641.

  • Xiao, F., D. Wang, L. Zeng, Q.-Y. Liu, and W. Zhou, 2019: Contrasting changes in the sea surface temperature and upper ocean heat content in the South China Sea during recent decades. Climate Dyn., 53, 15971612, https://doi.org/10.1007/s00382-019-04697-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiu, P., F. Chai, L. Shi, H. Xue, and Y. Chao, 2010: A census of eddy activities in the South China Sea during 1993–2007. J. Geophys. Res., 115, C03012, https://doi.org/10.1029/2009JC005657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Z. Qiu, and H. Chen, 1982: Overview of horizontal circulation in the South China Sea [in Chinese with English abstract]. Symposium on Hydrometeorology, Beijing Science Press, 137–145.

  • Yang, H., L. Wu, H. Liu, and Y. Yu, 2013: Eddy energy sources and sinks in the South China Sea. J. Geophys. Res. Oceans, 118, 47164726, https://doi.org/10.1002/jgrc.20343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., and Coauthors, 2019: Eddy-induced transport of saline Kuroshio water into the northern South China Sea. J. Geophys. Res. Oceans, 124, 66736687, https://doi.org/10.1029/2018JC014847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, J., Y. Du, Z. He, and C. Zhou, 2014: Enhancing the accuracy of automatic eddy detection and the capability of recognizing the multi-core structures from maps of sea level anomaly. Ocean Sci., 10, 3948, https://doi.org/10.5194/os-10-39-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, J., Y. Du, C. Zhou, F. Liang, and M. Yuan, 2015: Automatic identification of oceanic multieddy structures from satellite altimeter datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8, 15551563, https://doi.org/10.1109/JSTARS.2015.2417876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., and D. Wang, 2017: Seasonal variations in the barrier layer in the South China Sea: Characteristics, mechanisms and impact of warming. Climate Dyn., 48, 19111930, https://doi.org/10.1007/s00382-016-3182-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., Y. Du, S.-P. Xie, and D. Wang, 2009: Barrier layer in the South China Sea during summer 2000. Dyn. Atmos. Oceans, 47, 3854, https://doi.org/10.1016/j.dynatmoce.2008.08.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., W. T. Liu, H. Xue, P. Xiu, and D. Wang, 2014: Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data. J. Geophys. Res. Oceans, 119, 82968314, https://doi.org/10.1002/2014JC010108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., E. P. Chassignet, R. W. Schmitt, X. Xu, and D. Wang, 2018: Salinification in the South China Sea since late 2012: A reversal of the freshening since the 1990s. Geophys. Res. Lett., 45, 27442751, https://doi.org/10.1002/2017GL076574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, L., R. W. Schmitt, L. Li, Q. Wang, and D. Wang, 2019: Forecast of summer precipitation in the Yangtze River Valley based on South China Sea springtime sea surface salinity. Climate Dyn., 53, 54955509, https://doi.org/10.1007/s00382-019-04878-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., H. Li, S. Liu, L. Shao, Z. Zhao, and H. Liu, 2015: Automatic detection of oceanic eddies in reanalyzed SST images and its application in the East China Sea. Sci. China Earth Sci., 58, 22492259, https://doi.org/10.1007/s11430-015-5101-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Q. Huang, and W. Wang, 1994: Diagnostic calculations for the seasonal-averaged current field in the deep water zone of the South China Sea [in Chinese with English abstract]. Trop. Oceanol., 13, 815.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., W. Zhao, B. Qiu, and J. Tian, 2017: Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J. Phys. Oceanogr., 47, 12431259, https://doi.org/10.1175/JPO-D-16-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 38 38 38
Full Text Views 9 9 9
PDF Downloads 13 13 13

Three Mesoscale Eddy Detection and Tracking Methods: Assessment for the South China Sea

View More View Less
  • 1 Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
  • 2 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • 3 University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Abstract

Complex topography and the Kuroshio eddy-shedding process produce active mesoscale eddy activity in the South China Sea (SCS). Three eddy detection and tracking methods, the Okubo–Weiss (O-W), vector-geometry (V-G), and winding-angle (W-A) algorithms, have been widely applied for eddy identification. This study provides a comprehensive assessment of the O-W, V-G, and W-A methods in the SCS, including their detection, statistical analysis, and tracking capabilities. The mean successful detection rates of the O-W, V-G, and W-A methods are 51.9%, 56.8%, and 61.4%, respectively. The O-W and V-G methods preferentially detect eddies with medium radii (½°–1°), whereas the W-A method tends to detect eddies with larger radii (>1°). The V-G method identifies an excessive number of weak (radius < ⅓°) eddylike structures in the SCS, accounting for 48.2% of the total eddy number. The highest mean excessive detection rate of the V-G method biases the data on eddy number, probability, and propagation direction. With the lowest mean successful tracking rate (STR), the O-W method might not be suitable for tracking long-lived eddies in the SCS. The V-G method performs well with regard to the overtracking issue and has the lowest mean questionable tracking rate of 1.1%. Among the three methods, the W-A method tracks eddies most accurately, with the highest mean STR of 80.6%. Overall, the W-A method produces reasonable statistical eddy characteristics and eddy tracking results. Each method has advantages and disadvantages, and researchers should choose wisely according to their needs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yikai Yang, yangyikai@scsio.ac.cn

Abstract

Complex topography and the Kuroshio eddy-shedding process produce active mesoscale eddy activity in the South China Sea (SCS). Three eddy detection and tracking methods, the Okubo–Weiss (O-W), vector-geometry (V-G), and winding-angle (W-A) algorithms, have been widely applied for eddy identification. This study provides a comprehensive assessment of the O-W, V-G, and W-A methods in the SCS, including their detection, statistical analysis, and tracking capabilities. The mean successful detection rates of the O-W, V-G, and W-A methods are 51.9%, 56.8%, and 61.4%, respectively. The O-W and V-G methods preferentially detect eddies with medium radii (½°–1°), whereas the W-A method tends to detect eddies with larger radii (>1°). The V-G method identifies an excessive number of weak (radius < ⅓°) eddylike structures in the SCS, accounting for 48.2% of the total eddy number. The highest mean excessive detection rate of the V-G method biases the data on eddy number, probability, and propagation direction. With the lowest mean successful tracking rate (STR), the O-W method might not be suitable for tracking long-lived eddies in the SCS. The V-G method performs well with regard to the overtracking issue and has the lowest mean questionable tracking rate of 1.1%. Among the three methods, the W-A method tracks eddies most accurately, with the highest mean STR of 80.6%. Overall, the W-A method produces reasonable statistical eddy characteristics and eddy tracking results. Each method has advantages and disadvantages, and researchers should choose wisely according to their needs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yikai Yang, yangyikai@scsio.ac.cn
Save