• Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bodas-Salcedo, A., 2010: COSP user’s manual version 1.3. Met Office Hadley Centre Doc., 21 pp., http://www.cgd.ucar.edu/staff/jenkay/cosp/cosp_documentation/COSP_user_manual.rev597.pdf.

  • Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, M. A. Ringer, K. D. Williams, S. F. Milton, and D. R. Wilson, 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, https://doi.org/10.1029/2007JD009620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and et al. , 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., A. V. Ryzhkov, J. C. Snyder, and A. Khain, 2016: Hydrometeor mixing ratio retrievals for storm-scale radar data assimilation: Utility of current relations and potential benefits of polarimetry. Mon. Wea. Rev., 144, 29813001, https://doi.org/10.1175/MWR-D-15-0423.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., and H. Chepfer, 2012: How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett., 39, L20803, https://doi.org/10.1029/2012GL053153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, https://doi.org/10.1175/JCLI3884.1.

  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Michele, S., M. Ahlgrimm, R. Forbes, M. Kulie, R. Bennartz, M. Janisková, and P. Bauer, 2012: Interpreting an evaluation of the ECMWF global model with CloudSat observations: Ambiguities due to radar reflectivity forward operator uncertainties. Quart. J. Roy. Meteor. Soc., 138, 20472065, https://doi.org/10.1002/qj.1936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, S., and et al. , 2020: Simulated tropical precipitation assessed across three major phases of the Coupled Model Intercomparison Project (CMIP). Mon. Wea. Rev., 148, 36533680, https://doi.org/10.1175/MWR-D-19-0404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., Z. Sun, D. Bi, M. Dix, H. Yan, and A. Bodas-Salcedo, 2013a: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Global, seasonal, and regional cloud properties. J. Geophys. Res. Atmos., 118, 732748, https://doi.org/10.1029/2012JD018469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, C. N., Z. Sun, D. Bi, M. Dix, H. Yan, and A. Bodas-Salcedo, 2013b: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Regime-sorted tropical cloud properties. J. Geophys. Res. Atmos., 118, 66636679, https://doi.org/10.1002/jgrd.50496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, https://doi.org/10.2151/jmsj.2013-302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113121, https://doi.org/10.1175/1520-0469(1984)041<0113:SIOTMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., Z. Luo, G. L. Stephens, R. T. Marchand, and A. Bodas-Salcedo, 2007: A multipurpose radar simulation package: Quickbeam. Bull. Amer. Meteor. Soc., 88, 17231728, https://doi.org/10.1175/BAMS-88-11-1723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli, 2009: Rainfall retrieval over the ocean with spaceborne W-band radar. J. Geophys. Res., 114, D00A22, https://doi.org/10.1029/2008JD009973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hillman, B. R., R. T. Marchand, and T. P. Ackerman, 2018: Sensitivities of simulated satellite views of clouds to subgrid-scale overlap and condensate heterogeneity. J. Geophys. Res. Atmos., 123, 75067529, https://doi.org/10.1029/2017JD027680.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and et al. , 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. Brodzik, C. Schumacher, S. E. Yuter, and C. R. Williams, 2004: Uncertainties in oceanic radar rain maps at Kwajalein and implications for satellite validation. J. Appl. Meteor., 43, 11141132, https://doi.org/10.1175/1520-0450(2004)043<1114:UIORRM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 15071516, https://doi.org/10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 2017: GPM DPR precipitation profile L2A 1.5 hours 5 km V06. Goddard Earth Sciences Data and Information Services Center, accessed 27 February 2019, https://doi.org/10.5067/GPM/DPR/GPM/2A/06.

    • Crossref
    • Export Citation
  • Jin, D., L. Oreopoulos, and D. Lee, 2017a: Regime-based evaluation of cloudiness in CMIP5 models. Climate Dyn., 48, 89112, https://doi.org/10.1007/s00382-016-3064-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, D., L. Oreopoulos, and D. Lee, 2017b: Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models. Climate Dyn., 48, 113130, https://doi.org/10.1007/s00382-016-3107-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2012: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25, 51905207, https://doi.org/10.1175/JCLI-D-11-00469.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., T. L’Ecuyer, A. Pendergrass, H. Chepfer, R. Guzman, and V. Yettella, 2018: Scale-aware and definition-aware evaluation of modeled near-surface precipitation frequency using CloudSat observations. J. Geophys. Res. Atmos., 123, 42944309, https://doi.org/10.1002/2017JD028213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607–625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kodama, C., A. T. Noda, and M. Satoh, 2012: An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators. J. Geophys. Res., 117, D12210, https://doi.org/10.1029/2011JD017317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz, and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeor., 17, 12611279, https://doi.org/10.1175/JHM-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, https://doi.org/10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and et al. , 2010: Satellite data simulator unit. Bull. Amer. Meteor. Soc., 91, 16251632, https://doi.org/10.1175/2010BAMS2809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Potential for attenuation-based estimations of rainfall rate from CloudSat. Geophys. Res. Lett., 34, L05817, https://doi.org/10.1029/2006GL029161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C. C. W., and J. Quaas, 2012: Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Climate, 25, 49754992, https://doi.org/10.1175/JCLI-D-11-00347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nam, C. C. W., J. Quaas, R. Neggers, C. Siegenthaler-Le Drian, and F. Isotta, 2014: Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. J. Adv. Model. Earth Syst., 6, 300314, https://doi.org/10.1002/2013MS000277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and et al. , 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Posselt, D. J., A. R. Jongeward, C. Hsu, and G. L. Potter, 2012: Object-based evaluation of MERRA cloud physical properties and radiative fluxes during the 1998 El Niño–La Niña transition. J. Climate, 25, 73137327, https://doi.org/10.1175/JCLI-D-11-00724.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rast, S., B. Renate, M. Esch, V. Gayler, I. Kirchner, L. Kornbluh, A. Rhodin, and U. Schulzweida, 2012: User manual for ECHAM6, version ECHAM–6.1.00–guide–2.0. Max Planck Institute Earth System Research Rep., 124 pp., https://www.cen.uni-hamburg.de/en/icdc/data/atmosphere/docs-atmo/echam6-userguide.pdf.

  • Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 27082718, https://doi.org/10.1175/1520-0469(1986)043<2708:ASMMFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1992: Extension of the stochastic mixing model to cumulonimbus clouds. J. Atmos. Sci., 49, 19681983, https://doi.org/10.1175/1520-0469(1992)049<1968:EOTSMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and P. J. Rasch, 2008: Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J. Climate, 21, 14871499, https://doi.org/10.1175/2007JCLI1789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255, https://doi.org/10.1256/qj.05.121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., and et al. , 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, H., Z. Zhang, P. L. Ma, S. Ghan, and M. Wang, 2018: The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models. Geosci. Model Dev., 11, 31473158, https://doi.org/10.5194/gmd-11-3147-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stout, G. E., and E. A. Mueller, 1968: Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation. J. Appl. Meteor., 7, 465474, https://doi.org/10.1175/1520-0450(1968)007<0465:SORBRR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916934, https://doi.org/10.1175/JCLI3672.1.

  • Swales, D. J., R. Pincus, and A. Bodas-Salcedo, 2018: The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2. Geosci. Model Dev., 11, 7781, https://doi.org/10.5194/gmd-11-77-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, N., H. Hanado, and T. Iguchi, 2006: Estimation of path-integrated attenuation and its nonuniformity from TRMM/PR range profile data. IEEE Trans. Geosci. Remote Sens., 44, 32763283, https://doi.org/10.1109/TGRS.2006.876295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, J., L. Oreopoulos, C. Jakob, and D. Jin, 2018: Evaluating rainfall errors in global climate models through cloud regimes. Climate Dyn., 50, 33013314, https://doi.org/10.1007/s00382-017-3806-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toyoshima, K., H. Masunaga, and F. A. Furuzawa, 2015: Early evaluation of Ku- and Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). SOLA, 11, 1417, https://doi.org/10.2151/sola.2015-004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and et al. , 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114, D00A21, https://doi.org/10.1029/2008JD010015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905–922, https://doi.org/10.1007/s003820100157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M., and et al. , 2017: The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev., 10, 359384, https://doi.org/10.5194/gmd-10-359-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, https://doi.org/10.1002/qj.49712454504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., S. A. Klein, J. Boyle, and G. G. Mace, 2010: Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data. J. Geophys. Res., 115, D12205, https://doi.org/10.1029/2009JD012006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and et al. , 2018: The ARM cloud radar simulator for global climate models: Bridging field data and climate models. Bull. Amer. Meteor. Soc., 99, 2126, https://doi.org/10.1175/BAMS-D-16-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, W., R. Marchand, and Q. Fu, 2017: The diurnal cycle of clouds and precipitation at the ARM SGP site: Cloud radar observations and simulations from the multiscale modeling framework. J. Geophys. Res. Atmos., 122, 75197536, https://doi.org/10.1002/2016JD026353.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 126 126 84
Full Text Views 32 32 24
PDF Downloads 35 35 26

Adapting the COSP Radar Simulator to Compare GCM Output and GPM Precipitation Radar Observations

View More View Less
  • 1 a Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 b Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • | 3 c German Weather Service, Offenbach, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Comparisons of precipitation between general circulation models (GCMs) and observations are often confounded by a mismatch between model output and instrument measurements, including variable type and temporal and spatial resolutions. To mitigate these differences, the radar-simulator Quickbeam within the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) simulates reflectivity from model variables at the subgrid scale. This work adapts Quickbeam to the dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) satellite. The longer wavelength of the DPR is used to evaluate moderate to heavy precipitation in GCMs, which is missed when Quickbeam is used as a cloud radar simulator. Latitudinal and land–ocean comparisons are made between COSP output from the Community Atmospheric Model version 5 (CAM5) and DPR data. Additionally, this work improves the COSP subgrid algorithm by applying a more realistic, nondeterministic approach to assigning GCM gridbox convective cloud cover when convective cloud is not provided as a model output. Instead of assuming a static 5% convective cloud coverage, DPR convective precipitation coverage is used as a proxy for convective cloud coverage. For example, DPR observations show that convective rain typically only covers about 1% of a 2° grid box, but that the median convective rain area increases to over 10% in heavy rain cases. In our CAM5 tests, the updated subgrid algorithm improved the comparison between reflectivity distributions when the convective cloud cover is provided versus the default 5% convective cloud-cover assumption.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily M. Riley Dellaripa, emily.riley@colostate.edu

Abstract

Comparisons of precipitation between general circulation models (GCMs) and observations are often confounded by a mismatch between model output and instrument measurements, including variable type and temporal and spatial resolutions. To mitigate these differences, the radar-simulator Quickbeam within the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) simulates reflectivity from model variables at the subgrid scale. This work adapts Quickbeam to the dual-frequency precipitation radar (DPR) on board the Global Precipitation Measurement (GPM) satellite. The longer wavelength of the DPR is used to evaluate moderate to heavy precipitation in GCMs, which is missed when Quickbeam is used as a cloud radar simulator. Latitudinal and land–ocean comparisons are made between COSP output from the Community Atmospheric Model version 5 (CAM5) and DPR data. Additionally, this work improves the COSP subgrid algorithm by applying a more realistic, nondeterministic approach to assigning GCM gridbox convective cloud cover when convective cloud is not provided as a model output. Instead of assuming a static 5% convective cloud coverage, DPR convective precipitation coverage is used as a proxy for convective cloud coverage. For example, DPR observations show that convective rain typically only covers about 1% of a 2° grid box, but that the median convective rain area increases to over 10% in heavy rain cases. In our CAM5 tests, the updated subgrid algorithm improved the comparison between reflectivity distributions when the convective cloud cover is provided versus the default 5% convective cloud-cover assumption.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emily M. Riley Dellaripa, emily.riley@colostate.edu
Save