All Time Past Year Past 30 Days
Abstract Views 57 57 0
Full Text Views 76 76 48
PDF Downloads 62 62 36

Monte Carlo Simulations for Evaluating the Accuracy of Geostationary Lightning Mapper Detection Efficiency and False Alarm Rate Retrievals

Katrina S. VirtsaUniversity of Alabama in Huntsville, Huntsville, Alabama, USA

Search for other papers by Katrina S. Virts in
Current site
Google Scholar
PubMed
Close
and
William J. KoshakbNASA/Marshall Space Flight Center, Huntsville, Alabama, USA

Search for other papers by William J. Koshak in
Current site
Google Scholar
PubMed
Close
Open access

Abstract

Performance assessments of the Geostationary Lightning Mapper (GLM) are conducted via comparisons with independent observations from both satellite-based sensors and ground-based lightning detection (reference) networks. A key limitation of this evaluation is that the performance of the reference networks is both imperfect and imperfectly known, such that the true performance of GLM can only be estimated. Key GLM performance metrics such as detection efficiency (DE) and false alarm rate (FAR) retrieved through comparison with reference networks are affected by those networks’ own DE, FAR, and spatiotemporal accuracy, as well as the flash matching criteria applied in the analysis.

This study presents a Monte Carlo simulation-based inversion technique that is used to quantify how accurately the reference networks can assess GLM performance, as well as suggest the optimal matching criteria for estimating GLM performance. This is accomplished by running simulations that clarify the specific effect of reference network quality (i.e., DE, FAR, spatiotemporal accuracy, and the geographical patterns of these attributes) on the retrieved GLM performance metrics. Baseline reference network statistics are derived from the Earth Networks Global Lightning Network (ENGLN) and the Global Lightning Dataset (GLD360).

Geographic simulations indicate that the retrieved GLM DE is underestimated, with absolute errors ranging from 11% to 32%, while the retrieved GLM FAR is overestimated, with absolute errors of approximately 16-44%. GLM performance is most severely underestimated in the South Pacific. These results help quantify and bound the actual performance of GLM and the attendant uncertainties when comparing GLM to imperfect reference networks.

Corresponding author: Katrina S. Virts, katrina.virts@uah.edu

Abstract

Performance assessments of the Geostationary Lightning Mapper (GLM) are conducted via comparisons with independent observations from both satellite-based sensors and ground-based lightning detection (reference) networks. A key limitation of this evaluation is that the performance of the reference networks is both imperfect and imperfectly known, such that the true performance of GLM can only be estimated. Key GLM performance metrics such as detection efficiency (DE) and false alarm rate (FAR) retrieved through comparison with reference networks are affected by those networks’ own DE, FAR, and spatiotemporal accuracy, as well as the flash matching criteria applied in the analysis.

This study presents a Monte Carlo simulation-based inversion technique that is used to quantify how accurately the reference networks can assess GLM performance, as well as suggest the optimal matching criteria for estimating GLM performance. This is accomplished by running simulations that clarify the specific effect of reference network quality (i.e., DE, FAR, spatiotemporal accuracy, and the geographical patterns of these attributes) on the retrieved GLM performance metrics. Baseline reference network statistics are derived from the Earth Networks Global Lightning Network (ENGLN) and the Global Lightning Dataset (GLD360).

Geographic simulations indicate that the retrieved GLM DE is underestimated, with absolute errors ranging from 11% to 32%, while the retrieved GLM FAR is overestimated, with absolute errors of approximately 16-44%. GLM performance is most severely underestimated in the South Pacific. These results help quantify and bound the actual performance of GLM and the attendant uncertainties when comparing GLM to imperfect reference networks.

Corresponding author: Katrina S. Virts, katrina.virts@uah.edu
Save