ZONAL DISTRIBUTION OF BAROCLINITY FOR THREE PACIFIC STORMS

E. Paul McClain University of Washington

Search for other papers by E. Paul McClain in
Current site
Google Scholar
PubMed
Close
and
Edwin F. Danielsen University of Washington

Search for other papers by Edwin F. Danielsen in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

The thermal structure of the troposphere and lower stratosphere during the movement eastward of several Pacific troughs is examined primarily from the standpoint of the distribution of baroclinity within a vertical plane extending across the northwestern and north central United States. Baroclinity is defined and then expressed in a form suitable to the potential-temperature cross-sections employed in this study. Dominating features of the thermal field are two types of baroclinic zones: (1) broad and essentially non-frontal zones which form the leading and trailing edges of deep, rapidly moving cold domes in the middle and upper troposphere; (2) narrow, frontal type zones comprising the leading or trailing edges of either slowly-moving, low-level cold domes or rapidly-moving, upper-level ones. There is evidence that the non-frontal baroclinic zones are equally as important, both dynamically and synoptically, as the frontal ones.

Abstract

The thermal structure of the troposphere and lower stratosphere during the movement eastward of several Pacific troughs is examined primarily from the standpoint of the distribution of baroclinity within a vertical plane extending across the northwestern and north central United States. Baroclinity is defined and then expressed in a form suitable to the potential-temperature cross-sections employed in this study. Dominating features of the thermal field are two types of baroclinic zones: (1) broad and essentially non-frontal zones which form the leading and trailing edges of deep, rapidly moving cold domes in the middle and upper troposphere; (2) narrow, frontal type zones comprising the leading or trailing edges of either slowly-moving, low-level cold domes or rapidly-moving, upper-level ones. There is evidence that the non-frontal baroclinic zones are equally as important, both dynamically and synoptically, as the frontal ones.

Save