A LABORATORY STUDY OF CONTRAILS

View More View Less
  • 1 Cornell Aeronautical Laboratory, Inc.
© Get Permissions
Full access

Abstract

Contrails were produced for laboratory study by burning aircraft fuels under controlled conditions of ambient temperature and humidity at pressure altitudes between 1000 and 300 mb. Observed critical formation temperatures differ from Appleman's theoretical data in a manner similar to that obtained on project CLOUD TRAIL flights. Laboratory experiments with these trails proved that the initial phase of the condensed moisture is liquid and produced strong evidence that, contrary to general belief, the final phase is sometimes liquid. Additional evidence was obtained indicating that Appleman's criterion for a barely visible trail (0.004 g per m3 of condensed moisture) is very nearly correct for ideal conditions of observation such as used in the laboratory, but is probably small by an order of magnitude or more for adverse conditions. By modifying Appleman's theory to allow for the production of a visible quantity of liquid water under adverse viewing conditions, agreement is reached with project CLOUD TRAIL data. Also presented is a simple interpretation of the theory which substantially reduces the labor required to compute critical temperatures for contrail formation.

Abstract

Contrails were produced for laboratory study by burning aircraft fuels under controlled conditions of ambient temperature and humidity at pressure altitudes between 1000 and 300 mb. Observed critical formation temperatures differ from Appleman's theoretical data in a manner similar to that obtained on project CLOUD TRAIL flights. Laboratory experiments with these trails proved that the initial phase of the condensed moisture is liquid and produced strong evidence that, contrary to general belief, the final phase is sometimes liquid. Additional evidence was obtained indicating that Appleman's criterion for a barely visible trail (0.004 g per m3 of condensed moisture) is very nearly correct for ideal conditions of observation such as used in the laboratory, but is probably small by an order of magnitude or more for adverse conditions. By modifying Appleman's theory to allow for the production of a visible quantity of liquid water under adverse viewing conditions, agreement is reached with project CLOUD TRAIL data. Also presented is a simple interpretation of the theory which substantially reduces the labor required to compute critical temperatures for contrail formation.

Save