Quasi-Biennial Variations in Temperature, Total Ozone, and Tropopause Height

View More View Less
  • 1 U. S. Weather Bureau, Washington, D. C.
© Get Permissions
Full access

Abstract

An analysis of mean-monthly temperature and total ozone data suggests that quasi-biennial oscillations extend to the temperate and polar latitudes of both hemispheres. Basically, there is symmetry with respect to the equator, although the oscillations show up most clearly in the Southern Hemisphere, and there is a tendency for the biennial maximum of temperature and total ozone to occur in the spring. Harmonic analysis implies a poleward drift of the biennial maximum of temperature and total ozone at a rate near 0.2 m sec−1, with the drift becoming indistinct poleward of 40°.

The quasi-biennial variation in total ozone is very nearly in phase with the quasi-biennial variation in 50-mb temperature. There is also a quasi-biennial variation in tropopause height associated with the temperature oscillation in the lower stratosphere. There is weak evidence for a quasi-biennial variation in beryllium-7 in the lower stratosphere.

Abstract

An analysis of mean-monthly temperature and total ozone data suggests that quasi-biennial oscillations extend to the temperate and polar latitudes of both hemispheres. Basically, there is symmetry with respect to the equator, although the oscillations show up most clearly in the Southern Hemisphere, and there is a tendency for the biennial maximum of temperature and total ozone to occur in the spring. Harmonic analysis implies a poleward drift of the biennial maximum of temperature and total ozone at a rate near 0.2 m sec−1, with the drift becoming indistinct poleward of 40°.

The quasi-biennial variation in total ozone is very nearly in phase with the quasi-biennial variation in 50-mb temperature. There is also a quasi-biennial variation in tropopause height associated with the temperature oscillation in the lower stratosphere. There is weak evidence for a quasi-biennial variation in beryllium-7 in the lower stratosphere.

Save