The Runaway Greenhouse: A History of Water on Venus

View More View Less
  • 1 Division of Geological Sciences, California Institute of Technology, Pasadena
© Get Permissions
Full access

Abstract

Radiative-convective equilibrium models of planetary atmospheres are discussed for the case when the infrared opacity is due to a vapor in equilibrium with its liquid or solid phase. For a grey gas, or for a gas which absorbs at all infrared wavelengths, equilibrium is impossible when the solar constant exceeds a critical value. Equilibrium therefore requires that the condensed phase evaporates into the atmosphere.

Moist adiabatic and pseudoadiabatic atmospheres in which the condensing vapor is a major atmospheric constituent are considered. This situation would apply if the solar constant were supercritical with respect to an abundant substance such as water. It is shown that the condensing gas would be a major constituent at all levels in such an atmosphere. Photodissociation of water in the primordial Venus atmosphere is discussed in this context.

Abstract

Radiative-convective equilibrium models of planetary atmospheres are discussed for the case when the infrared opacity is due to a vapor in equilibrium with its liquid or solid phase. For a grey gas, or for a gas which absorbs at all infrared wavelengths, equilibrium is impossible when the solar constant exceeds a critical value. Equilibrium therefore requires that the condensed phase evaporates into the atmosphere.

Moist adiabatic and pseudoadiabatic atmospheres in which the condensing vapor is a major atmospheric constituent are considered. This situation would apply if the solar constant were supercritical with respect to an abundant substance such as water. It is shown that the condensing gas would be a major constituent at all levels in such an atmosphere. Photodissociation of water in the primordial Venus atmosphere is discussed in this context.

Save