The Birth of “CAT” and Microscale Turbulence

D. Atlas Dept. of the Geophysical Sciences, The University of Chicago

Search for other papers by D. Atlas in
Current site
Google Scholar
PubMed
Close
,
J. I. Metcalf Dept. of the Geophysical Sciences, The University of Chicago

Search for other papers by J. I. Metcalf in
Current site
Google Scholar
PubMed
Close
,
J. H. Richter Naval Electronics Laboratory Center, San Diego, Calif.

Search for other papers by J. H. Richter in
Current site
Google Scholar
PubMed
Close
, and
E. E. Gossard Naval Electronics Laboratory Center, San Diego, Calif.

Search for other papers by E. E. Gossard in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Ultra-high resolution (2m) radar observations show the amplification of unstable Kelvin-Helmholtz (KH) waves, the development of roll vortices, their breaking and the resulting turbulence, and appear to represent our first view of the life cycle of clear air turbulence. The KH waves are initiated at the base of an inversion at which the Richardson number, Ri, is slightly positive just prior to wave action, and above which Ri≫0. Accordingly, only a small enhancement of the wind shear at the interface will reduce Ri to the critical value (0–0.25) required to trigger KH waves. The KH waves also trigger stable waves in the dynamically stable stratum immediately above. Quantitative measurements indicate reflectivities typically 10 times greater, and occasionally 300 times greater, than the previously recorded maximum, but in strata of only a few meters vertical extent. Large-volume averaging by the prior low-resolution radars accounts largely for the discrepancy. The thinness of some of the scatter layers and the smoothness of the reflectivity contours precludes turbulent eddies exceeding a few meters, but the high reflectivities require major centimetric scale perturbations in refractivity. Direct measurements of microscale perturbations of the required magnitude by Lane, though rare, support the deductions. The origin of this microscale turbulence, especially in layers of large dynamic stability, is a mystery deserving attention. The intermittency of the KH wave activity and the undulations of the layer of large refractivity variance explain the previously reported patchiness of turbulence in and near stable strata, but raise serious questions as to the validity of long-path (duration) measurements of turbulence spectra. Both the form and intensity of the turbulence spectrum are also strongly dependent on height and the “age” of CAT.

Abstract

Ultra-high resolution (2m) radar observations show the amplification of unstable Kelvin-Helmholtz (KH) waves, the development of roll vortices, their breaking and the resulting turbulence, and appear to represent our first view of the life cycle of clear air turbulence. The KH waves are initiated at the base of an inversion at which the Richardson number, Ri, is slightly positive just prior to wave action, and above which Ri≫0. Accordingly, only a small enhancement of the wind shear at the interface will reduce Ri to the critical value (0–0.25) required to trigger KH waves. The KH waves also trigger stable waves in the dynamically stable stratum immediately above. Quantitative measurements indicate reflectivities typically 10 times greater, and occasionally 300 times greater, than the previously recorded maximum, but in strata of only a few meters vertical extent. Large-volume averaging by the prior low-resolution radars accounts largely for the discrepancy. The thinness of some of the scatter layers and the smoothness of the reflectivity contours precludes turbulent eddies exceeding a few meters, but the high reflectivities require major centimetric scale perturbations in refractivity. Direct measurements of microscale perturbations of the required magnitude by Lane, though rare, support the deductions. The origin of this microscale turbulence, especially in layers of large dynamic stability, is a mystery deserving attention. The intermittency of the KH wave activity and the undulations of the layer of large refractivity variance explain the previously reported patchiness of turbulence in and near stable strata, but raise serious questions as to the validity of long-path (duration) measurements of turbulence spectra. Both the form and intensity of the turbulence spectrum are also strongly dependent on height and the “age” of CAT.

Save