Dynamic Stability of an Isentropic Shear Layer in a Statically Stable Medium

Earl E. Gossard Wave Propagation Laboratory, NOAA/ERL, Boulder, Colo. 80302

Search for other papers by Earl E. Gossard in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Two theoretical models of shear layers in the atmosphere are examined. The conditions for their dynamic stability are found and their predictions of wavelength to layer-thickness ratio are compared with classical models and with available observational data. Although the models are only rigorously applicable to in-compressible fluids, it is suggested that they also represent conditions in the atmosphere, and clear-air returns published by Katz from the high-power pulse radar at Wallops Island are especially emphasized. Model 2 appears to be able to account for the narrow band characteristic of many of the observed events and also to explain better than other models the observed wavelength to layer-thickness ratios.

Abstract

Two theoretical models of shear layers in the atmosphere are examined. The conditions for their dynamic stability are found and their predictions of wavelength to layer-thickness ratio are compared with classical models and with available observational data. Although the models are only rigorously applicable to in-compressible fluids, it is suggested that they also represent conditions in the atmosphere, and clear-air returns published by Katz from the high-power pulse radar at Wallops Island are especially emphasized. Model 2 appears to be able to account for the narrow band characteristic of many of the observed events and also to explain better than other models the observed wavelength to layer-thickness ratios.

Save