All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 8 4
PDF Downloads 3 0 0

Simulated Radiance Patterns for Finite Cubic Clouds

Thomas McKeeDepartment of Atmospheric Science, Colorado State University, Fort Collins 80523

Search for other papers by Thomas McKee in
Current site
Google Scholar
PubMed
Close
and
Stephen K. CoxDepartment of Atmospheric Science, Colorado State University, Fort Collins 80523

Search for other papers by Stephen K. Cox in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Calculated distributions of scattered shortwave radiance are presented for simulated cumulus clouds using a cubic shape. Comparison with similar clouds of semi-infinite horizontal extent is included. For an incident solar zenith angle of 0° the angular distribution of the radiance exiting the cloud top is similar for the cube and the semi-infinite layer, but the radiance from the cube is much smaller for optical depths between 9.8 and 73.5. At an optical depth of 73.5 the vertical radiance from the cube is only 58% of the radiance from the semi-infinite layer cloud. For an incident solar zenith angle of 60°, the angular distribution and the magnitudes of the scattered radiances are similar for the cube top and the semi-infinite layer. A comparison of the total radiance from the cube top and side in the solar plane shows a dramatic change in angular distribution compared with the semi-infinite cloud. Radiances exiting the antisolar side of the cube illustrate the strong forward scattering for short optical paths near cloud edges. The transition from cubic clouds to semi-infinite layers is illustrated for a vertical sun. Results indicate a rapid change for width-to-depth ratios of 1–4 followed by a slower asymptotic change.

Abstract

Calculated distributions of scattered shortwave radiance are presented for simulated cumulus clouds using a cubic shape. Comparison with similar clouds of semi-infinite horizontal extent is included. For an incident solar zenith angle of 0° the angular distribution of the radiance exiting the cloud top is similar for the cube and the semi-infinite layer, but the radiance from the cube is much smaller for optical depths between 9.8 and 73.5. At an optical depth of 73.5 the vertical radiance from the cube is only 58% of the radiance from the semi-infinite layer cloud. For an incident solar zenith angle of 60°, the angular distribution and the magnitudes of the scattered radiances are similar for the cube top and the semi-infinite layer. A comparison of the total radiance from the cube top and side in the solar plane shows a dramatic change in angular distribution compared with the semi-infinite cloud. Radiances exiting the antisolar side of the cube illustrate the strong forward scattering for short optical paths near cloud edges. The transition from cubic clouds to semi-infinite layers is illustrated for a vertical sun. Results indicate a rapid change for width-to-depth ratios of 1–4 followed by a slower asymptotic change.

Save