The Effects of Latitudinal Shear on Equatorial Waves. Part II: Applications to the Atmosphere

John P. Boyd Department of Atmospheric and Oceanic Science, University of Michigan, Ann Arbor, MI 48109

Search for other papers by John P. Boyd in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

The analytical and numerical methodology of Boyd (1978) is applied to observed atmospheric waves. It is found that the structure and vertical wavelength of the stratospheric Kelvin wave of 15-day period and the tropospheric Kelvin wave of 40–50 day period are both negligibly affected by even the strongest shear. In contrast, the shear of the quasi-biennial oscillation can decrease the wavelength of the stratospheric n=0 mixed Rossby-gravity wave of 5-day period by 60% and produce changes of 50–100% in wave fluxes and velocities. The structure of synoptic-scale easterly waves (n=1 Rossby waves of 5-day period) is not drastically altered by shear, but the wavelength is tripled. This makes it unlikely that one can construct a quantitative wave-CISK theory of this mode without including latitudinal shear.

Abstract

The analytical and numerical methodology of Boyd (1978) is applied to observed atmospheric waves. It is found that the structure and vertical wavelength of the stratospheric Kelvin wave of 15-day period and the tropospheric Kelvin wave of 40–50 day period are both negligibly affected by even the strongest shear. In contrast, the shear of the quasi-biennial oscillation can decrease the wavelength of the stratospheric n=0 mixed Rossby-gravity wave of 5-day period by 60% and produce changes of 50–100% in wave fluxes and velocities. The structure of synoptic-scale easterly waves (n=1 Rossby waves of 5-day period) is not drastically altered by shear, but the wavelength is tripled. This makes it unlikely that one can construct a quantitative wave-CISK theory of this mode without including latitudinal shear.

Save