A Study in Tornado-Like Vortex Dynamics

Richard Rotunno Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA, Boulder 80309

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Fine-resolution calculations using an axisymmetric numerical model of the flow within a Ward-type vortex chamber are discussed. Particular attention is paid to the vortex-ground interaction. Variations in the swirl ratio S from zero to unity lead to radically different vortex structure in the “corner” region (i.e., near r = z = 0). For S Lt; 1, a concentrated vortex forms in the upper chamber but not in the corner. At moderate S, we observe vortex breakdown, large-amplitude inertial waves, and very intense swirling motion in the corner. When S = 1, the central downdraft penetrates to the lower surface and the vortex breakdown occurs within the boundary layer. These results are consistent with experimental observations and suggest the explanation of a number of observed facets of tornadoes.

Abstract

Fine-resolution calculations using an axisymmetric numerical model of the flow within a Ward-type vortex chamber are discussed. Particular attention is paid to the vortex-ground interaction. Variations in the swirl ratio S from zero to unity lead to radically different vortex structure in the “corner” region (i.e., near r = z = 0). For S Lt; 1, a concentrated vortex forms in the upper chamber but not in the corner. At moderate S, we observe vortex breakdown, large-amplitude inertial waves, and very intense swirling motion in the corner. When S = 1, the central downdraft penetrates to the lower surface and the vortex breakdown occurs within the boundary layer. These results are consistent with experimental observations and suggest the explanation of a number of observed facets of tornadoes.

Save