Predissociation of Nitric Oxide in the Mesosphere and Stratosphere

J. E. Frederick NASA/Goddard Space Flight Center, Laboratory for Planetary Atmospheres, Greenbelt, Maryland 20771

Search for other papers by J. E. Frederick in
Current site
Google Scholar
PubMed
Close
and
R. D. Hudson NASA/Goddard Space Flight Center, Laboratory for Planetary Atmospheres, Greenbelt, Maryland 20771

Search for other papers by R. D. Hudson in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Absorption of solar photons by nitric oxide in the wavelength ranges 181.3–183.5 and 189.4–191.6 nm leads to predissociation of the molecule in the mesosphere and upper stratosphere. Molecular oxygen controls the penetration of the required solar irradiance via absorption in the Schumann-Runge bands, while attenuation due to ozone becomes significant in the upper stratosphere. The calculation of the nitric oxide dissociation rate is complicated by the need to include all rotational fine structure in both the NO and O2 cross sections. The dissociation rate computed here for the upper mesosphere is a factor of 3.6 less than that reported in past work when currently accepted values of the oscillator strengths and solar irradiance are used. In addition, improved molecular parameters describing the O2 cross section predict less attenuation of the dissociation rate with decreasing altitude than results previously available.

Abstract

Absorption of solar photons by nitric oxide in the wavelength ranges 181.3–183.5 and 189.4–191.6 nm leads to predissociation of the molecule in the mesosphere and upper stratosphere. Molecular oxygen controls the penetration of the required solar irradiance via absorption in the Schumann-Runge bands, while attenuation due to ozone becomes significant in the upper stratosphere. The calculation of the nitric oxide dissociation rate is complicated by the need to include all rotational fine structure in both the NO and O2 cross sections. The dissociation rate computed here for the upper mesosphere is a factor of 3.6 less than that reported in past work when currently accepted values of the oscillator strengths and solar irradiance are used. In addition, improved molecular parameters describing the O2 cross section predict less attenuation of the dissociation rate with decreasing altitude than results previously available.

Save