All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 414 122 10
PDF Downloads 226 79 6

A Study of Homogeneous Condensation-Freezing Nucleation of Small Water Droplets in an Expansion Cloud Chamber

Rodney J. AndersonPhysics Department and Graduate Center for Cloud Physics Research, University of Missouri, Ralla 65401

Search for other papers by Rodney J. Anderson in
Current site
Google Scholar
PubMed
Close
,
Ronald C. MillerPhysics Department and Graduate Center for Cloud Physics Research, University of Missouri, Ralla 65401

Search for other papers by Ronald C. Miller in
Current site
Google Scholar
PubMed
Close
,
James L. Kassner Jr.Physics Department and Graduate Center for Cloud Physics Research, University of Missouri, Ralla 65401

Search for other papers by James L. Kassner Jr. in
Current site
Google Scholar
PubMed
Close
, and
Donald E. HagenPhysics Department and Graduate Center for Cloud Physics Research, University of Missouri, Ralla 65401

Search for other papers by Donald E. Hagen in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Observations of the homogeneous nucleation of water vapor in an expansion cloud chamber have been carried out for the temperature range −50 to +17°C in the carrier gases argon and helium. We have found that the onset of the ice phase in freshly nucleated drops always occurs in the form of a two-stage process, condensation followed by homogeneous freezing at temperatures near −40°C. Ice particles appear as brilliant spherical particles in the cloud of liquid drops which scatter much less light. The critical gas temperature associated with the observation of ice nucleation depends on the type of carrier gas, the duration of the minimum final temperature, and whether there are ions or re-evaporation nuclei present. These effects and the analysis of the total homogeneous nucleation rate (liquid drops plus ice particles) strongly support the conclusion that the ice particles result from the freezing of liquid water drops which have been nucleated homogeneously from the vapor phase. A somewhat higher critical freezing temperature is observed in the absence of an electric clearing field. This probably is an indication that ice particles preferentially form on ions or simply that droplets which nucleate slightly earlier on ions have a chance to grow to a larger size, thus increasing the droplets’ probability of freezing. An ice memory effect has also been observed in nucleation which occurs on re-evaporation nuclei remaining from previous expansions. lens and re-evaporation nuclei raise the threshold temperature of ice nucleation about 1 and 2°C, respectively, above the critical spontaneous freezing temperature (−41°C). Consequently, they would be expected to have little impact on atmospheric processes.

Abstract

Observations of the homogeneous nucleation of water vapor in an expansion cloud chamber have been carried out for the temperature range −50 to +17°C in the carrier gases argon and helium. We have found that the onset of the ice phase in freshly nucleated drops always occurs in the form of a two-stage process, condensation followed by homogeneous freezing at temperatures near −40°C. Ice particles appear as brilliant spherical particles in the cloud of liquid drops which scatter much less light. The critical gas temperature associated with the observation of ice nucleation depends on the type of carrier gas, the duration of the minimum final temperature, and whether there are ions or re-evaporation nuclei present. These effects and the analysis of the total homogeneous nucleation rate (liquid drops plus ice particles) strongly support the conclusion that the ice particles result from the freezing of liquid water drops which have been nucleated homogeneously from the vapor phase. A somewhat higher critical freezing temperature is observed in the absence of an electric clearing field. This probably is an indication that ice particles preferentially form on ions or simply that droplets which nucleate slightly earlier on ions have a chance to grow to a larger size, thus increasing the droplets’ probability of freezing. An ice memory effect has also been observed in nucleation which occurs on re-evaporation nuclei remaining from previous expansions. lens and re-evaporation nuclei raise the threshold temperature of ice nucleation about 1 and 2°C, respectively, above the critical spontaneous freezing temperature (−41°C). Consequently, they would be expected to have little impact on atmospheric processes.

Save