A Model for the Spectral Albedo of Snow. I: Pure Snow

Warren J. Wiscombe National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by Warren J. Wiscombe in
Current site
Google Scholar
PubMed
Close
and
Stephen G. Warren National Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by Stephen G. Warren in
Current site
Google Scholar
PubMed
Close
Full access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

We present a method for calculating the spectral albedo of snow which can be used at any wavelength in the solar spectrum and which accounts for diffusely or directly incident radiation at any zenith angle. For deep snow, the model contains only one adjustable parameter, an effective grain size, which is close to observed grain sizes. A second parameter, the liquid-equivalent depth, is required only for relatively thin snow.

In order for the model to make realistic predictions, it must account for the extreme anisotropy of scattering by snow particles. This is done by using the “delta-Eddington” approximation for multiple scattering, together with Mie theory for single scattering.

The spectral albedo from 0.3 to 5 μm wavelength is examined as a function of the effective grain size, the solar zenith angle, the snowpack thickness, and the ratio of diffuse to direct solar incidence. The decrease in albedo due to snow aging can be mimicked by reasonable increases in grain size (50–100 μm for new snow, growing to 1 mm for melting old snow).

The model agrees well with observations for wavelengths above 0.8 μm. In the visible and near-UV, on the other hand, the model may predict albedos up to 15% higher than those which are actually observed. Increased grain size alone cannot lower the model albedo sufficiently to match these observations. It is also argued that the two major effects which are neglected in the model, namely nonsphericity of snow grains and near-field scattering, cannot be responsible for the discrepancy. Insufficient snow depth and error in measured absorption coefficient are also ruled out as the explanation. The remaining hypothesis is that visible snow albedo is reduced by trace amounts of absorptive impurities (Warren and Wiscombe, 1980, Part II).

Abstract

We present a method for calculating the spectral albedo of snow which can be used at any wavelength in the solar spectrum and which accounts for diffusely or directly incident radiation at any zenith angle. For deep snow, the model contains only one adjustable parameter, an effective grain size, which is close to observed grain sizes. A second parameter, the liquid-equivalent depth, is required only for relatively thin snow.

In order for the model to make realistic predictions, it must account for the extreme anisotropy of scattering by snow particles. This is done by using the “delta-Eddington” approximation for multiple scattering, together with Mie theory for single scattering.

The spectral albedo from 0.3 to 5 μm wavelength is examined as a function of the effective grain size, the solar zenith angle, the snowpack thickness, and the ratio of diffuse to direct solar incidence. The decrease in albedo due to snow aging can be mimicked by reasonable increases in grain size (50–100 μm for new snow, growing to 1 mm for melting old snow).

The model agrees well with observations for wavelengths above 0.8 μm. In the visible and near-UV, on the other hand, the model may predict albedos up to 15% higher than those which are actually observed. Increased grain size alone cannot lower the model albedo sufficiently to match these observations. It is also argued that the two major effects which are neglected in the model, namely nonsphericity of snow grains and near-field scattering, cannot be responsible for the discrepancy. Insufficient snow depth and error in measured absorption coefficient are also ruled out as the explanation. The remaining hypothesis is that visible snow albedo is reduced by trace amounts of absorptive impurities (Warren and Wiscombe, 1980, Part II).

Save