Abstract
We illustrate the potential complexity of the feedback between global mean cloud amount and global mean surface temperature when variations of the vertical cloud distribution are included by studying the behavior of a one-dimensional radiative–convective model with two types of cloud variation: 1) variable cloud cover with constant optical thickness and 2) variable optical thickness with constant cloud cover. The variable parameter is calculated assuming a correlation between cloud amount and precipitation or the vertical flux convergence of latent heat. Since the vertical latent heat flux is taken to be a fraction of the total heat flux, modeled by convective adjustment, we examine the sensitivity of the results to two different critical lapse rates, a constant 6.5 K km−1 lapse rate and a temperature-dependent, moist adiabatic lapse rate. The effects of the vertical structure of climate perturbations on the nature of the cloud feedback are examined using two cases: a 2% increase in the solar constant and a doubling of the atmospheric carbon dioxide concentration. The model results show that changes in the vertical cloud distribution and mean cloud optical thickness can be as important to climate variations as are changes in the total cloud cover. Further the variety and complexity of the feedbacks exhibited even by this simple model suggest that proper determination of cloud feedbacks must include the effects of varying vertical distribution.