Abstract
A model of quasi-geostrophic uniform potential vorticity flow, previously examined by Blumen (1978a,b), is considered. The total depth-integrated energy and the available potential energy on level boundaries are conserved by the motion. Nonlinear interactions between three different scales of motion are examined. The linear system is first analyzed to determine the normal modes of the model. There are two sets of normal modes, corresponding to two different unstable growth rates. It is then shown that if normal mode initial conditions are specified for the nonlinear initial-value problem, the two conservation principles may be combined to yield a single constraint on the nonlinear interactions that occur between three scales of motion. The properties of normal mode initial conditions are also used to cast this constraint into a relatively simple form that is appropriate during the initial stages of the finite amplitude motion.
Numerical integrations of the basic set of equations reveal that the solutions are quite sensitive to the initial conditions. When normal mode initial conditions corresponding to the largest unstable growth rate are used, the simpler constraint continues to apply past the initial stages of growth. Analytical confirmation of this result is also provided. Nonlinear motions, associated with the other set of normal mode initial conditions, are also examined. The initial stages of the motion are similar to those above, but then the solutions tend to become aperiodic and the simpler form of the constraint on scale interactions does not apply. Extension of the range of integration over a broader range of initial conditions is suggested by these results.