A Comparison Between Satellite-Defined and Parameterized Land-Water Differences in Emitted Longwave Radiation

View More View Less
  • 1 NASA Langley Research Center, Hampton, VA 23665
© Get Permissions
Full access

Abstract

An analysis is performed to qualitatively compare the seasonal variation in emitted longwave radiation over land and over water areas as determined from 12 months of Nimbus 6 satellite data with that defined from parameterizations of this radiation budget component. These variations are noted when land and water surface areas are mapped to corresponding areas at the “top” of the atmosphere. Variations of a surface-temperature-dependent parameterization of emitted longwave radiation originally suggested by Budyko (1969) are considered. The longwave radiation parameterizations indicate small differences between land and water profiles of emitted longwave radiation at the top of an atmospheric column in low latitudes in comparison to large differences in this feature shown to exist in the satellite data. The small differences are noted in linear parameterizations of emitted flux when zonally-averaged satellite data are used to define equation coefficients.

Abstract

An analysis is performed to qualitatively compare the seasonal variation in emitted longwave radiation over land and over water areas as determined from 12 months of Nimbus 6 satellite data with that defined from parameterizations of this radiation budget component. These variations are noted when land and water surface areas are mapped to corresponding areas at the “top” of the atmosphere. Variations of a surface-temperature-dependent parameterization of emitted longwave radiation originally suggested by Budyko (1969) are considered. The longwave radiation parameterizations indicate small differences between land and water profiles of emitted longwave radiation at the top of an atmospheric column in low latitudes in comparison to large differences in this feature shown to exist in the satellite data. The small differences are noted in linear parameterizations of emitted flux when zonally-averaged satellite data are used to define equation coefficients.

Save