A Model Study of the Temporal and Spatial Variations of the Zonally-Averaged Ozone Heating Rate

View More View Less
  • 1 Institute for Atmospheric Optics and Remote Sensing, Hampton, VA 23666
© Get Permissions
Full access

Abstract

The temporal and spatial variations of the zonally-averaged ozone beating rate in the middle atmosphere on a global scale are investigated in detail based on a model study. This study shows that the mean ozone heating rate calculation can be made in a realistic manner by taking advantage of the existing two-dimensional ozone distribution and including the effect of the sphericity of the earth's atmosphere. The obtained ozone heating rates have also been Fourier-analyzed. The common features of the first three harmonic components which correspond respectively to the annual, semiannual and terannual variations are (1) the local maximum amplitudes are located in the altitude regions between 45 and 57 km; (2) local maximum amplitude can be found in the polar region; and (3) maximum horizontal gradients of the beating rate are concentrated in the high latitudes from 60 to 90°. It is also found that the amplitude of the second Fourier component at the pole is about six times greater than that at the equator.

Abstract

The temporal and spatial variations of the zonally-averaged ozone beating rate in the middle atmosphere on a global scale are investigated in detail based on a model study. This study shows that the mean ozone heating rate calculation can be made in a realistic manner by taking advantage of the existing two-dimensional ozone distribution and including the effect of the sphericity of the earth's atmosphere. The obtained ozone heating rates have also been Fourier-analyzed. The common features of the first three harmonic components which correspond respectively to the annual, semiannual and terannual variations are (1) the local maximum amplitudes are located in the altitude regions between 45 and 57 km; (2) local maximum amplitude can be found in the polar region; and (3) maximum horizontal gradients of the beating rate are concentrated in the high latitudes from 60 to 90°. It is also found that the amplitude of the second Fourier component at the pole is about six times greater than that at the equator.

Save