On the Dynamics of Stratocumulus Formation and Dissipation

David A. Randall Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, MD 20771

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
and
Max J. Suarez Laboratory for Atmospheres, NASA/Goddard Space Flight Center, Greenbelt, MD 20771

Search for other papers by Max J. Suarez in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Result obtained with a mixed layer model are used to study the dynamics of stratomulus formation and dissipation in subtropical marine stratocumulus cloud regimes. The model used allows entrainment to be driven by shear as well as buoyancy, and includes a very crude parameterization of the partial blackness of thin cloud layers. Model results show that for some values of the large-scale divergence there are three equilibrium mixed layer structures, two of which are stable. One of the stable equilibria is cloudy, deep, and buoyancy-driven, while the other is clear, shallow, and shear-driven. It is found that as a result of hysteresis effects a transient increase in the large-scale divergence can produce a long-lasting break in the clouds.

Abstract

Result obtained with a mixed layer model are used to study the dynamics of stratomulus formation and dissipation in subtropical marine stratocumulus cloud regimes. The model used allows entrainment to be driven by shear as well as buoyancy, and includes a very crude parameterization of the partial blackness of thin cloud layers. Model results show that for some values of the large-scale divergence there are three equilibrium mixed layer structures, two of which are stable. One of the stable equilibria is cloudy, deep, and buoyancy-driven, while the other is clear, shallow, and shear-driven. It is found that as a result of hysteresis effects a transient increase in the large-scale divergence can produce a long-lasting break in the clouds.

Save