Inertia–Gravity Waves in the Stratosphere

View More View Less
  • 1 Physical Dynamics, Inc., Bellevue, WA 98009
© Get Permissions
Full access

Abstract

The propagation and refraction of stationary inertia–gravity waves in the winter stratosphere is examined with ray tracing. Due to their smaller vertical group velocity these waves experience more lateral ray movement and horizontal refraction that the simple gravity waves recently discussed by Dunkerton and Butchart. Stationary waves are rotated by the transverse horizontal shear and propagate into the polar night jet. Circumstances are found in which the mean flow shear has enhanced unstable wavebreaking by compressing, the wave packet and decreasing the absolute value of wave action density required for breaking. In some other places, reflection from the caustic is more likely.

Abstract

The propagation and refraction of stationary inertia–gravity waves in the winter stratosphere is examined with ray tracing. Due to their smaller vertical group velocity these waves experience more lateral ray movement and horizontal refraction that the simple gravity waves recently discussed by Dunkerton and Butchart. Stationary waves are rotated by the transverse horizontal shear and propagate into the polar night jet. Circumstances are found in which the mean flow shear has enhanced unstable wavebreaking by compressing, the wave packet and decreasing the absolute value of wave action density required for breaking. In some other places, reflection from the caustic is more likely.

Save