A Two-Dimensional Model of the Quasi-Biennial Oscillation

View More View Less
  • 1 Physical Dynamics, Inc., Bellevue, WA 98009
© Get Permissions
Full access

Abstract

The quasi-biennial oscillation is simulated in two dimensions using a WKB approach for the equatorial waves in which analytic approximations to the wave-induced body forces are inserted as forcing terms in a primitive equation model of the zonally-averaged flow. Realistically large amplitude oscillations are obtained with this method.

Examination of one such oscillation in this paper clarifies the linear and nonlinear role of the residual mean meridional circulation: at low latitudes due to its vertical advection of momentum, and at higher latitudes on account of the Coriolis torque. Because this circulation also advects ozone, the primary source of radiative heating in this region, coupling between the ozone and dynamical oscillations will be significant in determining the strength of this meridional circulation.

Also of importance for the waves themselves are the scale-dependent radiative damping rate and, in the Rossby-gravity wave, the effect of latitudinal shear.

Abstract

The quasi-biennial oscillation is simulated in two dimensions using a WKB approach for the equatorial waves in which analytic approximations to the wave-induced body forces are inserted as forcing terms in a primitive equation model of the zonally-averaged flow. Realistically large amplitude oscillations are obtained with this method.

Examination of one such oscillation in this paper clarifies the linear and nonlinear role of the residual mean meridional circulation: at low latitudes due to its vertical advection of momentum, and at higher latitudes on account of the Coriolis torque. Because this circulation also advects ozone, the primary source of radiative heating in this region, coupling between the ozone and dynamical oscillations will be significant in determining the strength of this meridional circulation.

Also of importance for the waves themselves are the scale-dependent radiative damping rate and, in the Rossby-gravity wave, the effect of latitudinal shear.

Save