All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 45 6
PDF Downloads 122 65 7

On the Radiative Balance of the Stratosphere

J. T. KiehlNational Center for Atmospheric Research, Boulder, CO 80307

Search for other papers by J. T. Kiehl in
Current site
Google Scholar
PubMed
Close
and
Susan SolomonNOAA/Aeronomy Laboratory, Boulder, CO 80307

Search for other papers by Susan Solomon in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

The zonally averaged radiative balance of the stratosphere based on the measured temperature structure and gas concentrations available from the LIMS instrument is examined in detail. These data are extant for seven months (November 1978 to May 1979). The contribution to the net radiative balance due to the individual components of solar heating and longwave cooling is discussed. These components are further broken down by individual gas constituent to understand the role each gas plays in determining the total radiative heating/cooling. The deficiencies of employing a latitudinally and temporally independent Newtonian damping coefficient are also explored. In particular, the Newtonian damping time is shown to vary by a factor of two in both latitude and season. Net zonally averaged stratosphere radiative heating for the seven months of LIMS data are presented. These net heating rates are important in determining the role of advective transport of chemical constituents. An important feature that appears in the derived radiative heating is the existence of a region of net radiative cooling near the equatorial stratopause.

Abstract

The zonally averaged radiative balance of the stratosphere based on the measured temperature structure and gas concentrations available from the LIMS instrument is examined in detail. These data are extant for seven months (November 1978 to May 1979). The contribution to the net radiative balance due to the individual components of solar heating and longwave cooling is discussed. These components are further broken down by individual gas constituent to understand the role each gas plays in determining the total radiative heating/cooling. The deficiencies of employing a latitudinally and temporally independent Newtonian damping coefficient are also explored. In particular, the Newtonian damping time is shown to vary by a factor of two in both latitude and season. Net zonally averaged stratosphere radiative heating for the seven months of LIMS data are presented. These net heating rates are important in determining the role of advective transport of chemical constituents. An important feature that appears in the derived radiative heating is the existence of a region of net radiative cooling near the equatorial stratopause.

Save