Nonlinear Hadley Circulation Driven by Asymmetric Differential Heating

View More View Less
  • 1 Northwest Research Associates, Inc., Bellevue, Washington
© Get Permissions
Full access

Abstract

The dynamical state of the stratosphere influenced by radiative heating, with no internal sources or sinks of angular momentum, is examined. It is shown that there exists a nonlinear Hadley regime driven by antisymmetric (or more generally, asymmetric) thermal equilibria typical of the middle atmosphere at the solstices. This regime consists of a single mean meridional cell, equatorial easterlies and strong winter westerlies. Outside of the circulation region the flow is in thermal equilibrium.

The effect of one-sided friction, acting as a drag on midlatitude westerlies only, is to expand the Hadley cell into the winter hemisphere and increase the magnitude of cross-equatorial flow. This result is possible even in the steady state when the advection of angular momentum in the tropics is made small by reducing the gradient of angular momentum in this region instead of the advecting velocity.

Abstract

The dynamical state of the stratosphere influenced by radiative heating, with no internal sources or sinks of angular momentum, is examined. It is shown that there exists a nonlinear Hadley regime driven by antisymmetric (or more generally, asymmetric) thermal equilibria typical of the middle atmosphere at the solstices. This regime consists of a single mean meridional cell, equatorial easterlies and strong winter westerlies. Outside of the circulation region the flow is in thermal equilibrium.

The effect of one-sided friction, acting as a drag on midlatitude westerlies only, is to expand the Hadley cell into the winter hemisphere and increase the magnitude of cross-equatorial flow. This result is possible even in the steady state when the advection of angular momentum in the tropics is made small by reducing the gradient of angular momentum in this region instead of the advecting velocity.

Save