Abstract
A robust algorithm, capable of finding nearly stationary solutions of the unforced barotropic vorticity equation near to observed atmospheric streamfunctions, is presented. When applied to observed persistent anomaly patterns, the nearly stationary states (NSSs) produced by the algorithm usually have a distinctive appearance. NSSs produced for observed blocks tend to have even stronger blocks, and NSSs for intense jet anomaly patterns have intense jets. When applied to observed patterns that are not associated with persistent anomalies, the algorithm produces low-amplitude relatively zonal NSSs. The blocking and intense jet anomaly NSSs bear a striking resemblance to previously derived analytic stationary solutions of the vorticity equation. In particular, NSS blocking states are similar to certain types of modons.The algorithm is applied to a number of modified observed flows to better document what features of an observed pattern determine the nature of the resulting NSS. The short-wave components of an observed pattern need not be present in order for the algorithm to find interesting zonally varying NSSs. However, short waves play an essential part in the resulting NSSs by balancing the long-wave time tendencies. All the NSSs discovered are unstable to the introduction of small perturbations in the barotropic vorticity equation. Despite this instability, the NSSs still persist for many days when integrated in time. The existence of these persistent NSSs may play a significant role in the appearance and subsequent longevity of persistent anomaly patterns in the atmosphere.