Physical Processes within the Nocturnal Stratus-topped Boundary Layer

Chin-Hoh Moeng National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chin-Hoh Moeng in
Current site
Google Scholar
PubMed
Close
,
Shaohua Shen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Shaohua Shen in
Current site
Google Scholar
PubMed
Close
, and
David A. Randall Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by David A. Randall in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Within the stratus-topped boundary layer many physical processes are involved: longwave radiation cooling, entrainment, latent heating, surface heating, solar heating, drizzling, etc. How all processes combine to maintain the turbulence within the stratus-topped boundary layer remains an unsolved problem. The large-eddy simulation technique is used to examine the first four physical processes mentioned. First, the contribution of each physical process to the thermodynamic differences between the updraft and downdraft branches of turbulent circulations is examined through a conditional sampling. Second, these mean thermodynamic differences are shown to express well the vertical distributions of heat and moisture fluxes within stratus-topped boundary layers.

These provide a method to validate the process-partitioning technique. (This technique assumes that the net flux profile can be partitioned into different component-flux profiles according to physical processes and that each partitioned component flux is linear in height.) In this paper, the heat and moisture fluxes are process partitioned, and each component flux is found to contribute to the net flux in a way that is consistent with its corresponding process contribution to the mean thermodynamic differences between updrafts and downdrafts. Also, the net flux obtained by summing all component fluxes agrees well with that obtained directly from the large-eddy simulations.

Abstract

Within the stratus-topped boundary layer many physical processes are involved: longwave radiation cooling, entrainment, latent heating, surface heating, solar heating, drizzling, etc. How all processes combine to maintain the turbulence within the stratus-topped boundary layer remains an unsolved problem. The large-eddy simulation technique is used to examine the first four physical processes mentioned. First, the contribution of each physical process to the thermodynamic differences between the updraft and downdraft branches of turbulent circulations is examined through a conditional sampling. Second, these mean thermodynamic differences are shown to express well the vertical distributions of heat and moisture fluxes within stratus-topped boundary layers.

These provide a method to validate the process-partitioning technique. (This technique assumes that the net flux profile can be partitioned into different component-flux profiles according to physical processes and that each partitioned component flux is linear in height.) In this paper, the heat and moisture fluxes are process partitioned, and each component flux is found to contribute to the net flux in a way that is consistent with its corresponding process contribution to the mean thermodynamic differences between updrafts and downdrafts. Also, the net flux obtained by summing all component fluxes agrees well with that obtained directly from the large-eddy simulations.

Save