Observational Evidence of Preferred Flow Regimes in the Northern Hemisphere Winter Stratosphere

R. Bradley Pierce Atmospheric Sciences Division, NASA /Langley Research Center, Hampton, Virginia

Search for other papers by R. Bradley Pierce in
Current site
Google Scholar
PubMed
Close
and
T. Duncan A. Fairlie Science and Technology Corporation, Hampton, Virginia

Search for other papers by T. Duncan A. Fairlie in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Ten yeah of stratosphere geopotential height data are analyzed in an attempt to determine whether there are preferred flow regimes in the Northern Hemisphere winter stratosphere. The data are taken from Stratospheric Sounding Units on board NOAA satellites. The probability density estimate of the amplitude of the wavenumber 1 10-mb height is found to be bimodal. The density distribution is composed of a dominant large-amplitude mode and a less frequent low-amplitude mode. When the wavenumber 1 10-mb height data are projected onto the phase plant defined by the 10-mb zonal-mean winds and wavenumber 1 100-mb heights, three preferred regimes are evident. The small-amplitude mode separates into a strong zonal wind-weak wave regime and a weak zonal wind-weak wave regime. The large-amplitude mode is an intermediate zonal wind-strong wave regime. Transitions between the large-amplitude regime and the weak zonal wind-weak wave regime are found to be associated with major stratospheric warnings. The clustering of the stratospheric data into the preferred flow regimes is interpreted in light of the bifurcation properties of the Holton and Mass model. The interannual variability of the Northern Hemisphere winter stratosphere is interpreted in terms of the relative frequency of the observed preferred regimes.

Abstract

Ten yeah of stratosphere geopotential height data are analyzed in an attempt to determine whether there are preferred flow regimes in the Northern Hemisphere winter stratosphere. The data are taken from Stratospheric Sounding Units on board NOAA satellites. The probability density estimate of the amplitude of the wavenumber 1 10-mb height is found to be bimodal. The density distribution is composed of a dominant large-amplitude mode and a less frequent low-amplitude mode. When the wavenumber 1 10-mb height data are projected onto the phase plant defined by the 10-mb zonal-mean winds and wavenumber 1 100-mb heights, three preferred regimes are evident. The small-amplitude mode separates into a strong zonal wind-weak wave regime and a weak zonal wind-weak wave regime. The large-amplitude mode is an intermediate zonal wind-strong wave regime. Transitions between the large-amplitude regime and the weak zonal wind-weak wave regime are found to be associated with major stratospheric warnings. The clustering of the stratospheric data into the preferred flow regimes is interpreted in light of the bifurcation properties of the Holton and Mass model. The interannual variability of the Northern Hemisphere winter stratosphere is interpreted in terms of the relative frequency of the observed preferred regimes.

Save