Multiple Flow Regimes in the Northern Hemisphere Winter. Part I: Methodology and Hemispheric Regimes

View More View Less
  • 1 Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan
  • | 2 Climate Dynamics Center, Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California
© Get Permissions
Full access

Abstract

Recurrent and persistent flow patterns are identified by examining multivariate probability density functions (PDFs) in the phase space of large-scale atmospheric motions. This idea is pursued systematically here in the hope of clarifying the extent to which intraseasonal variability can be described and understood in terms of multiple flow regimes.

Bivariate PDFs of the Northern Hemisphere (NH) wintertime anomaly heights at 700 mb are examined in the present paper, using a 37-year dataset. The two-dimensional phase plane is defined by the two leading empirical orthogonal functions (EOFs) of the anomaly fields. PDFs on this plane exhibit synoptically intriguing and statistically significant inhomogeneities on the periphery of the distribution. It is shown that these inhomogeneities are due to the existence of persistent and recurrent anomaly patterns, well-known as dominant teleconnection patterns; that is, the Pacific/North American (PNA) pattern, its reverse, and zonal and blocked phases of the North Atlantic Oscillation (NAO). It is argued that the inhomogeneities are obscured when PDFs are examined in a smaller-dimensional subspace than dynamically desired.

Abstract

Recurrent and persistent flow patterns are identified by examining multivariate probability density functions (PDFs) in the phase space of large-scale atmospheric motions. This idea is pursued systematically here in the hope of clarifying the extent to which intraseasonal variability can be described and understood in terms of multiple flow regimes.

Bivariate PDFs of the Northern Hemisphere (NH) wintertime anomaly heights at 700 mb are examined in the present paper, using a 37-year dataset. The two-dimensional phase plane is defined by the two leading empirical orthogonal functions (EOFs) of the anomaly fields. PDFs on this plane exhibit synoptically intriguing and statistically significant inhomogeneities on the periphery of the distribution. It is shown that these inhomogeneities are due to the existence of persistent and recurrent anomaly patterns, well-known as dominant teleconnection patterns; that is, the Pacific/North American (PNA) pattern, its reverse, and zonal and blocked phases of the North Atlantic Oscillation (NAO). It is argued that the inhomogeneities are obscured when PDFs are examined in a smaller-dimensional subspace than dynamically desired.

Save