The Stable Internal Boundary Layer over a Coastal Sea. Part II: Gravity Waves and the Momentum Balance

David P. Rogers Scripps Institution of Oceanography, La Jolla, California

Search for other papers by David P. Rogers in
Current site
Google Scholar
PubMed
Close
,
Douglas W. Johnson Meteorological Research Flight, Defense Research Agency (Aerospace), Farnborough, United Kingdom

Search for other papers by Douglas W. Johnson in
Current site
Google Scholar
PubMed
Close
, and
Carl A. Friehe Department of Mechanical Engineering, University of California Irvine, California

Search for other papers by Carl A. Friehe in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

Observations of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). obtained using the U.K. Meteorological Research Flight C-130 Hercules aircraft are used to investigate the momentum balance over the Irish Sea when warm air is advected offshore. The marine boundary layer is made up of two layers: a strongly stable internal boundary layer (IBL). and a stable residual layer located between the top of the IBL and the base of the planetary boundary layer inversion.

Measurements obtained near the upwind coast indicate that the flow is highly ageostrophic. Downwind of the Irish coast, there is a transition toward equilibrium between the geostrophic, Coriolis. and friction components of the flow along part of the flight track. However, another segment of the flight track indicates an imbalance between the pressure gradient and the other measured terms, which may be attributable to gravity waves affecting the adjustment process. This is more apparent in the leg perpendicular to the coast where the pressure gradient is balanced by the observed acceleration with negligible contributions from the Coriolis and friction terms.

Gravity waves associated with mountain lee waves propagate along the direction of the mean wind shear in the IBL, which is directed to the right of the wind measured along the flight track perpendicular to the coast at 30-m altitude. The dominant wavelength is about 19 km, which corresponds with the buoyancy frequency of the MABL new the Irish coast and is supported by satellite images of the cloud structure. Farther downstream the buoyancy frequency increases, but the longer wavelength signal remains dominant. An important result of the gravity waves is the modification of the wind field and wind stress within the IBL. The largest effect is observed in the stress direction, but large changes in magnitude are also observed. The results indicate that the direction of the wind stress corresponds to a large degree with the direction of the mean horizontal wind sheer.

Abstract

Observations of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). obtained using the U.K. Meteorological Research Flight C-130 Hercules aircraft are used to investigate the momentum balance over the Irish Sea when warm air is advected offshore. The marine boundary layer is made up of two layers: a strongly stable internal boundary layer (IBL). and a stable residual layer located between the top of the IBL and the base of the planetary boundary layer inversion.

Measurements obtained near the upwind coast indicate that the flow is highly ageostrophic. Downwind of the Irish coast, there is a transition toward equilibrium between the geostrophic, Coriolis. and friction components of the flow along part of the flight track. However, another segment of the flight track indicates an imbalance between the pressure gradient and the other measured terms, which may be attributable to gravity waves affecting the adjustment process. This is more apparent in the leg perpendicular to the coast where the pressure gradient is balanced by the observed acceleration with negligible contributions from the Coriolis and friction terms.

Gravity waves associated with mountain lee waves propagate along the direction of the mean wind shear in the IBL, which is directed to the right of the wind measured along the flight track perpendicular to the coast at 30-m altitude. The dominant wavelength is about 19 km, which corresponds with the buoyancy frequency of the MABL new the Irish coast and is supported by satellite images of the cloud structure. Farther downstream the buoyancy frequency increases, but the longer wavelength signal remains dominant. An important result of the gravity waves is the modification of the wind field and wind stress within the IBL. The largest effect is observed in the stress direction, but large changes in magnitude are also observed. The results indicate that the direction of the wind stress corresponds to a large degree with the direction of the mean horizontal wind sheer.

Save