Nonnormality Increases Variance

View More View Less
  • 1 Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, Massachusetts
© Get Permissions
Full access

Abstract

Recently, a new theoretical and conceptual model of quasigeostrophic turbulence has been advanced in which eddy variance is regarded as being maintained by transient growth of perturbations arising from sources including the nonlinear interactions among the eddies, but crucially without a direct contribution of unstable modal growth to the maintenance of variance. This theory is based on the finding that stochastic forcing of the subcritical atmospheric flow supports variance arising from induced transfer of energy from the background flow to the disturbance field that substantially exceeds the variance expected from the decay rate of the associated normal modes in an equivalent normal system. Herein the authors prove that such amplification of variance is a general property of the stochastic dynamics of systems governed by nonnormal evolution operators and that consequently the response of the atmosphere to unbiased forcing is always underestimated when consideration is limited to the response of the system's individual normal modes to stochastic excitation.

Abstract

Recently, a new theoretical and conceptual model of quasigeostrophic turbulence has been advanced in which eddy variance is regarded as being maintained by transient growth of perturbations arising from sources including the nonlinear interactions among the eddies, but crucially without a direct contribution of unstable modal growth to the maintenance of variance. This theory is based on the finding that stochastic forcing of the subcritical atmospheric flow supports variance arising from induced transfer of energy from the background flow to the disturbance field that substantially exceeds the variance expected from the decay rate of the associated normal modes in an equivalent normal system. Herein the authors prove that such amplification of variance is a general property of the stochastic dynamics of systems governed by nonnormal evolution operators and that consequently the response of the atmosphere to unbiased forcing is always underestimated when consideration is limited to the response of the system's individual normal modes to stochastic excitation.

Save