Rain in Shallow and Deep Convection Measured with a Polarimetric Radar

Alexander V. Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alexander V. Ryzhkov in
Current site
Google Scholar
PubMed
Close
and
Dusan S. Zrnić NOAA, National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Dusan S. Zrnić in
Current site
Google Scholar
PubMed
Close
Full access

Abstract

The authors contrast rainfall in two Oklahoma squall lines: one with deep convection occurred in the spring and the other with shallower convection in the winter. Both passed over a micronetwork of densely spaced rain gauges and were observed with the National Severe Storm Laboratory's polarimetric weather radar. Polarimetric measurements reveal differences in storm structure that in turn imply that microphysical processes caused the drop size distributions to be quite distinct for the two events. In the winter squall line the conventional R(Z) algorithm for estimating rainfall fails badly, whereas in the summer squall line it performs well. The method based on specific differential phase measurements, however, yields a very good match between radar-derived areal precipitation amount and rain depth obtained from the micronetwork of densely located rain gauges for both events.

Abstract

The authors contrast rainfall in two Oklahoma squall lines: one with deep convection occurred in the spring and the other with shallower convection in the winter. Both passed over a micronetwork of densely spaced rain gauges and were observed with the National Severe Storm Laboratory's polarimetric weather radar. Polarimetric measurements reveal differences in storm structure that in turn imply that microphysical processes caused the drop size distributions to be quite distinct for the two events. In the winter squall line the conventional R(Z) algorithm for estimating rainfall fails badly, whereas in the summer squall line it performs well. The method based on specific differential phase measurements, however, yields a very good match between radar-derived areal precipitation amount and rain depth obtained from the micronetwork of densely located rain gauges for both events.

Save