Multispectral, High-Resolution Satellite Observations of Plumes on Top of Convective Storms

View More View Less
  • 1 Institute FISBAT–CNR, Bologna, Italy
  • 2 Satellite and Radar Department, Czech Hydrometeorological Institute, Prague, Czech Republic
© Get Permissions
Full access

Abstract

Multispectral, high-resolution imagery from the Advanced Very High Resolution Radiometer of NOAA polar orbiting satellites is used to analyze the cloud-top structure of convective storms that develop a cirrus feature above the anvil, referred to as a plume, whose origin remains unclear. Images from the radiometer's channels 2, 3, and 4 and a combination of any two of these suggest a relationship between the emergence of such plumes and a source of small ice particles (diameter around 3.7 µm, channel 3 wavelength) at the cloud top. Unique observations of deep convective storms over Europe are presented and discussed. The paper does not provide an exhaustive explanation of the phenomenon but contributes original material to the study of convective storm cloud-top structure, which is far from being completely described.

Abstract

Multispectral, high-resolution imagery from the Advanced Very High Resolution Radiometer of NOAA polar orbiting satellites is used to analyze the cloud-top structure of convective storms that develop a cirrus feature above the anvil, referred to as a plume, whose origin remains unclear. Images from the radiometer's channels 2, 3, and 4 and a combination of any two of these suggest a relationship between the emergence of such plumes and a source of small ice particles (diameter around 3.7 µm, channel 3 wavelength) at the cloud top. Unique observations of deep convective storms over Europe are presented and discussed. The paper does not provide an exhaustive explanation of the phenomenon but contributes original material to the study of convective storm cloud-top structure, which is far from being completely described.

Save