• Anthes, R. A., 1974: The dynamics and energetics of mature tropical cyclones. Rev. Geophys., 12, 495522, https://doi.org/10.1029/RG012i003p00495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C., and C. C. Wu, 2018: The role of WISHE in secondary eyewall formation. J. Atmos. Sci., 75, 38233841, https://doi.org/10.1175/JAS-D-17-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colón, E., J. Lindesay, and M. J. Suarez, 2002: The impact of surface flux- and circulation-driven feedbacks on simulated Madden–Julian oscillations. J. Climate, 15, 624641, https://doi.org/10.1175/1520-0442(2002)015<0624:TIOSFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and S. L. Gray, 1996: CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53, 35283540, https://doi.org/10.1175/1520-0469(1996)053<3528:COWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmosphere. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., 2015: Hurricane maximum potential intensity equilibrium. Quart. J. Roy. Meteor. Soc., 141, 24712480, https://doi.org/10.1002/qj.2556.

  • Kieu, C. Q., and Q. Wang, 2017: Stability of tropical cyclone equilibrium. J. Atmos. Sci., 74, 35913608, https://doi.org/10.1175/JAS-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C. Q., and Q. Wang, 2018: On the scale dynamics of the tropical cyclone intensity. Discrete Contin. Dyn. Syst., 23B, 30473070, https://doi.org/10.3934/DCDSB.2017196.

    • Search Google Scholar
    • Export Citation
  • Kowaleski, A. M., and J. L. Evans, 2016: A reformulation of tropical cyclone potential intensity theory incorporating energy production along a radial trajectory. Mon. Wea. Rev., 144, 35693578, https://doi.org/10.1175/MWR-D-15-0383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. G. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Oceanogr. J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., V. S. Nguyen, J. Persing, and R. K. Smith, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714, https://doi.org/10.1002/qj.459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. Smith, 2015: Putting to rest WISHE-full misconceptions for tropical cyclone intensification. J. Adv. Model. Earth Syst., 7, 92109, https://doi.org/10.1002/2014MS000362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1964: A dynamical model for the study of tropical cyclone development. Geofis Int., 4, 187198.

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. M. Rozoff, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595605, https://doi.org/10.1002/qj.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., C. J. Slocum, and R. K. Taft, 2016: Forced, balanced model of tropical cyclone intensification. J. Meteor. Soc. Japan, 94, 119135, https://doi.org/10.2151/jmsj.2016-007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1997: On the theory of CISK. Quart. J. Roy. Meteor. Soc., 123, 407418, https://doi.org/10.1002/qj.49712353808.

  • Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, https://doi.org/10.1175/JAS-D-11-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res., 84, 31733183, https://doi.org/10.1029/JC084iC06p03173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1964: Formation of tropical cyclones. Rev. Geophys., 2, 367414, https://doi.org/10.1029/RG002i002p00367.

  • Zhang, F., and K. Emanuel, 2016: On the role of surface fluxes and WISHE in tropical cyclone intensification. J. Atmos. Sci., 73, 20112019, https://doi.org/10.1175/JAS-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 30 30 14
Full Text Views 6 6 5
PDF Downloads 12 12 10

Frictionally Induced Feedback in a Reduced Dynamical Model of Tropical Cyclone Intensification

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana
  • 2 Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, Colorado
  • 3 Department of Mathematics, Sichuan University, Chengdu, China
© Get Permissions
Restricted access

Abstract

This study examines the role of frictional feedback in the atmospheric boundary layer during tropical cyclone (TC) development. Using a reduced model of TC dynamics, it is shown that a feedback between frictional convergence and convective heating in the absence of slantwise moist neutrality is capable of producing a stable maximum-intensity limit, even without surface fluxes. However, the efficiency of this frictional-convergence feedback depends crucially on how effectively boundary layer moisture convergence is converted into convective heating, which decreases rapidly as the TC inner core approaches a state of moist neutrality. This decreasing efficiency during TC intensification explains why the effect of the frictional-convergence feedback is generally small compared to that of the wind-induced surface heat exchange (WISHE) feedback under the strict conditions of slantwise moist neutrality. Examination of the reduced TC model with a constant-heating source reveals that TC intensification is not peculiar to any specific feedback mechanism but, rather, is a direct consequence of the inward advection of absolute angular momentum, regardless of feedback mechanism.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chanh Kieu, ckieu@indiana.edu

Abstract

This study examines the role of frictional feedback in the atmospheric boundary layer during tropical cyclone (TC) development. Using a reduced model of TC dynamics, it is shown that a feedback between frictional convergence and convective heating in the absence of slantwise moist neutrality is capable of producing a stable maximum-intensity limit, even without surface fluxes. However, the efficiency of this frictional-convergence feedback depends crucially on how effectively boundary layer moisture convergence is converted into convective heating, which decreases rapidly as the TC inner core approaches a state of moist neutrality. This decreasing efficiency during TC intensification explains why the effect of the frictional-convergence feedback is generally small compared to that of the wind-induced surface heat exchange (WISHE) feedback under the strict conditions of slantwise moist neutrality. Examination of the reduced TC model with a constant-heating source reveals that TC intensification is not peculiar to any specific feedback mechanism but, rather, is a direct consequence of the inward advection of absolute angular momentum, regardless of feedback mechanism.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chanh Kieu, ckieu@indiana.edu
Save