• Alexander, M. J., and J. R. Holton, 2004: On the spectrum of vertically propagating gravity waves generated by a transient heat source. Atmos. Chem. Phys., 4, 923932, https://doi.org/10.5194/acp-4-923-2004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., and C. J. C. Reason, 2009: Numerical simulation of a mesoscale convective system over the east coast of South Africa. Tellus, 61, 1734, https://doi.org/10.1111/j.1600-0870.2008.00366.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and A. Seimon, 1988: A case study of an unusually intense atmospheric gravity wave. Mon. Wea. Rev., 116, 18571886, https://doi.org/10.1175/1520-0493(1988)116<1857:ACSOAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Breeding, R. J., 1971: A non-linear investigation of critical levels for internal atmospheric gravity waves. J. Fluid Mech., 50, 545563, https://doi.org/10.1017/S0022112071002751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buzzi, A., M. Fantini, and G. Lippolis, 1991: Quasi-stationary organized convection in the presence of an inversion near the surface: Experiments with a 2-D numerical model. Meteor. Atmos. Phys., 45, 7586, https://doi.org/10.1007/BF01027476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 2649, https://doi.org/10.1175/1520-0493(1990)118<0026:TGAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., C. M. Taylor, A. J. Thorpe, R. J. Harding, and M. E. Nicholls, 2003: The influence of spatial variability of boundary-layer moisture on tropical continental squall lines. Quart. J. Roy. Meteor. Soc., 129, 11011121, https://doi.org/10.1256/qj.02.122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, D. B., C. M. Taylor, and A. J. Thorpe, 2004: Feedback between the land surface and rainfall at convective length scales. J. Hydrometeor., 5, 625639, https://doi.org/10.1175/1525-7541(2004)005<0625:FBTLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. H., 1983: Fair weather nocturnal inland wind surges and atmospheric bores: Part I: Nocturnal wind surges. Aust. Meteor. Mag., 31, 133145.

    • Search Google Scholar
    • Export Citation
  • Clark, R. H., 1984: Colliding sea-breezes and the creation of internal atmospheric bore waves: Two-dimensional numerical studies. Aust. Meteor. Mag., 32, 207226.

    • Search Google Scholar
    • Export Citation
  • Cohuet, J. B., R. Romero, V. Homar, V. Ducrocq, and C. Ramis, 2011: Initiation of a severe thunderstorm over the Mediterranean Sea. Atmos. Res., 100, 603620, https://doi.org/10.1016/j.atmosres.2010.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1986: The effect of ambient stratification and moisture on the motion of atmospheric undular bores. J. Atmos. Sci., 43, 171181, https://doi.org/10.1175/1520-0469(1986)043<0171:TEOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 36063624, https://doi.org/10.1175/1520-0469(1988)045<3606:TEOLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2010: Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteor., 137, 129, https://doi.org/10.1007/s10546-010-9517-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2003: An expression for effective buoyancy in surroundings with horizontal density gradients. J. Atmos. Sci., 60, 29222925, https://doi.org/10.1175/1520-0469(2003)060<2922:AEFEBI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeLonge, M. S., J. D. Fuentes, S. Chan, P. A. Kucera, E. Joseph, A. T. Gaye, and B. Daouda, 2010: Attributes of mesoscale convective systems at the land-ocean transition in Sengal during NASA African monsoon multidisciplinary analyses 2006. J. Geophys. Res., 115, D10213, https://doi.org/10.1029/2009JD012518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, https://doi.org/10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and R. Ge, 1984: An atmospheric solitary gust observed with a Doppler radar, a tall tower and a surface network. J. Atmos. Sci., 41, 25592573, https://doi.org/10.1175/1520-0469(1984)041<2559:AASGOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drosdowsky, W., G. J. Holland, and R. K. Smith, 1989: Structure and evolution of north Australian cloud lines observed during AMEX Phase I. Mon. Wea. Rev., 117, 11811192, https://doi.org/10.1175/1520-0493(1989)117<1181:SAEONA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., M. W. Moncrieff, and D. W. K. So, 1987: The two-dimensional dynamics of west African squall lines. Quart. J. Roy. Meteor. Soc., 113, 121146, https://doi.org/10.1002/qj.49711347508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall line storms. Quart. J. Roy. Meteor. Soc., 128, 893912, https://doi.org/10.1256/0035900021643737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 14271442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kim, 2006: Discrete propagation of numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, https://doi.org/10.1175/MWR3268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2010: The response of simulated nocturnal convective systems to a developing low-level jet. J. Atmos. Sci., 67, 33843408, https://doi.org/10.1175/2010JAS3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulton, J., D. S. Zrnić, and R. J. Doviak, 1990: Initiation of a solitary wave family in the demise of a nocturnal thunderstorm density current. J. Atmos. Sci., 47, 319337, https://doi.org/10.1175/1520-0469(1990)047<0319:IOASWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. D. Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, https://doi.org/10.1175/JCLI4297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garstang, M., H. L. Massie Jr., J. Halverson, S. Greco, and J. Scala, 1994: Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Wea. Rev., 122, 608622, https://doi.org/10.1175/1520-0493(1994)122<0608:ACSLPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 plains elevated convection at night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greco, S., J. Scala, J. Halverson, H. L. Massie Jr., W.-K. Tao, and M. Garstang, 1994: Amazon coastal squall lines. Part II: Heat and moisture transports. Mon. Wea. Rev., 122, 623635, https://doi.org/10.1175/1520-0493(1994)122<0623:ACSLPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S. P., and R. K. Smith, 1984: Morning glory wave clouds in Oklahoma: A case study. Mon. Wea. Rev., 112, 20782089, https://doi.org/10.1175/1520-0493(1984)112<2078:MGWCIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haase, S. P., and R. K. Smith, 1989: The numerical simulation of atmospheric gravity currents. Part II: Environments with stable layers. Geophys. Astrophys. Fluid Dyn., 46, 3551, https://doi.org/10.1080/03091928908208903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., and Coauthors, 2019: Bore-ing into nocturnal convection. Bull. Amer. Meteor. Soc., 100, 11031121, https://doi.org/10.1175/BAMS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2007: Propagating diurnal disturbances embedded in the Madden-Julian oscillation. Geophys. Res. Lett., 34, L18811, https://doi.org/10.1029/2007GL030480.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of buoyancy-layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, https://doi.org/10.1175/JAS-D-14-0349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyser, D., and R. A. Anthes, 1977: The applicability of a mixed-layer model of the planetary boundary layer to real-data forecasting. Mon. Wea. Rev., 105, 13511371, https://doi.org/10.1175/1520-0493(1977)105<1351:TAOAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., and N. A. Crook, 2003: An observational study of atmospheric bore formation from colliding density currents. Mon. Wea. Rev., 131, 29853002, https://doi.org/10.1175/1520-0493(2003)131<2985:AOSOAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 2006: Observational analysis of a gust from to bore to solitary wave transition within an evolving nocturnal boundary layer. J. Atmos. Sci., 63, 20162035, https://doi.org/10.1175/JAS3731.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kömüşçü, A. Ü., A. Erkan, and S. Çelik, 1998: Analysis of meteorological and terrain features leading to the i̇Zmir flash flood, 3–4 November 1995. Nat. Hazards, 18, 125, https://doi.org/10.1023/A:1008078920113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurz, M., and A. D. Fontana, 2004: A case of cyclogenesis over the western Mediterranean Sea with extraordinary convective activity. Meteor. Appl., 11, 97113, https://doi.org/10.1017/S1350482704001161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 34933518, https://doi.org/10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and S. Schiff, 2007: Using MSG to monitor the evolution of severe convective storms over east Mediterranean Sea and Israel, and its response to aerosol loading. Ann. Glaciol., 112, 95100, https://doi.org/10.5194/adgeo-12-95-2007.

    • Search Google Scholar
    • Export Citation
  • Lericos, T. P., H. E. Fuelberg, M. L. Weisman, and A. I. Watson, 2007: Numerical simulations of the effects of coastlines on the evolution of strong, long-lived squall lines. Mon. Wea. Rev., 135, 17101731, https://doi.org/10.1175/MWR3381.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 11791195, https://doi.org/10.1175/2010WAF2222379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., B. Wang, and D.-H. Wang, 2012: The characteristics of mesoscale convective systems (MCSs) over East Asia in warm seasons. Atmos. Oceanic Sci. Lett., 5, 102107, https://doi.org/10.1080/16742834.2012.11446973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University Press, 630 pp.

    • Crossref
    • Export Citation
  • Lin, Y.-L., and R. G. Goff, 1988: A study of a mesoscale solitary wave in the atmosphere originating near a region of deep convection. J. Atmos. Sci., 45, 194206, https://doi.org/10.1175/1520-0469(1988)045<0194:ASOAMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617, https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., and B. A. Colle, 2010: The spatial and temporal distribution of organized convective structures over the Northeast and their ambient conditions. Mon. Wea. Rev., 138, 44564474, https://doi.org/10.1175/2010MWR3463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., and B. A. Colle, 2011: Convective storm structures and ambient conditions associated with severe weather over the northeast United States. Wea. Forecasting, 26, 940956, https://doi.org/10.1175/WAF-D-11-00002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., and B. A. Colle, 2012: Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the northeastern U.S. coast. Mon. Wea. Rev., 140, 38053819, https://doi.org/10.1175/MWR-D-12-00050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., and B. A. Colle, 2013: Processes controlling the structure and longevity of two quasi-linear convective systems crossing the southern New England coast. Mon. Wea. Rev., 141, 37103734, https://doi.org/10.1175/MWR-D-12-00336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., and T. Kading, 2018: The behavior of squall lines in horizontally heterogeneous coastal environments. J. Atmos. Sci., 75, 12431269, https://doi.org/10.1175/JAS-D-17-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., E. Sinsky, Y. Jia, M. M. Whitney, and J. Edson, 2016: Sensitivity of simulated sea breezes to initial conditions in complex coastal regions. Mon. Wea. Rev., 144, 12991320, https://doi.org/10.1175/MWR-D-15-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lombardo, K., E. Sinsky, J. Edson, M. M. Whitney, and Y. Jia, 2018: Sensitivity of offshore surface fluxes and sea breezes to the spatial distribution of sea-surface temperature. Bound.-Layer Meteor., 166, 475502, https://doi.org/10.1007/s10546-017-0313-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loveless, D. M., T. J. Wagner, D. D. Turner, S. A. Ackerman, and W. F. Feltz, 2019: A composite perspective on bore passages during the PECAN campaign. Mon. Wea. Rev., 147, 13951413, https://doi.org/10.1175/MWR-D-18-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., S. B. Trier, T. M. Weckwerth, and J. W. Wilson, 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, https://doi.org/10.1175/2010MWR3422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattos, E. V., and L. A. T. Machado, 2011: Cloud-to-ground lightning and mesoscale convective systems. Atmos. Res., 99, 377390, https://doi.org/10.1016/j.atmosres.2010.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, Z., D. Yan, and Y. Zhang, 2013: General features of squall lines in east China. Mon. Wea. Rev., 141, 16291647, https://doi.org/10.1175/MWR-D-12-00208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002a: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quart. J. Roy. Meteor. Soc., 128, 19531971, https://doi.org/10.1256/003590002320603485.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002b: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Quart. J. Roy. Meteor. Soc., 128, 19731995, https://doi.org/10.1256/003590002320603494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarski, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrant, G. Bryan, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysical based in the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, https://doi.org/10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noonan, J. A., and R. K. Smith, 1986: Sea-breeze circulations over Cape York Pennsylvania and the generation of Gulf of Carpentaria cloud line disturbances. J. Atmos. Sci., 43, 16791693, https://doi.org/10.1175/1520-0469(1986)043<1679:SBCOCY>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noonan, J. A., and R. K. Smith, 1987: The generation of north Australia cloud lines and the ‘morning glory’. Aust. Meteor. Mag., 35, 3145.

    • Search Google Scholar
    • Export Citation
  • Nunalee, C. G., and S. Basu, 2014: Mesoscale modeling of coastal low-level jets: Implications for offshore wind resource estimation. Wind Energy, 17, 11991216, https://doi.org/10.1002/we.1628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M., 2008: Response of simulated squall lines to low-level cooling. J. Atmos. Sci., 65, 13231341, https://doi.org/10.1175/2007JAS2507.1.

  • Parker, M. D., and R. H. Johnson, 2004: Simulated convective lines with leading precipitation. Part II: Evolution and maintenance. J. Atmos. Sci., 61, 16561673, https://doi.org/10.1175/1520-0469(2004)061<1656:SCLWLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, and B. Elmer, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, K., and C. Hohenegger, 2017: The dependence of squall line characteristics on surface conditions. J. Atmos. Sci., 74, 22112228, https://doi.org/10.1175/JAS-D-16-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and J. E. Simpson, 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, https://doi.org/10.1002/qj.49711548809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and L. F. Bosart, 2014: A case study of the interaction of a mesoscale gravity wave with a mesoscale convective system. Mon. Wea. Rev., 142, 14031429, https://doi.org/10.1175/MWR-D-13-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves in squall line structure and maintenance. J. Atmos. Sci., 47, 12051222, https://doi.org/10.1175/1520-0469(1990)047<1205:IBUALT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2009: Mechanisms for quasi-stationary behavior in simulated heavy-rain-producing convective systems. J. Atmos. Sci., 66, 15431568, https://doi.org/10.1175/2008JAS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., 2015: Sensitivity of precipitation accumulation in elevated convective systems to small changes in low-level moisture. J. Atmos. Sci., 72, 25072524, https://doi.org/10.1175/JAS-D-14-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, C.-W., 2001: High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. CASE Rep. 2001-11 NASA/CR-2001-210865, 16 pp.

  • Simpson, J. E., 1982: Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech., 14, 213234, https://doi.org/10.1146/annurev.fl.14.010182.001241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., 1986: Evening glory wave-cloud lines in northwestern Australia. Aust. Meteor. Mag., 34, 2733.

  • Taylor, C. M., F. Saïd, and T. Lebel, 1997: Interactions between the land surface and mesoscale convective rainfall variability during HAPEX-Sahel. Mon. Wea. Rev., 125, 22112227, https://doi.org/10.1175/1520-0493(1997)125<2211:IBTLSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739762, https://doi.org/10.1002/qj.49710845802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF Model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. H. Marsham, C. A. Davis, and D. A. Ahijevych, 2011: Numerical simulations of the postsunrise reorganization of a nocturnal mesoscale convective system during 13 June IHOP_2002. J. Atmos. Sci., 68, 29883011, https://doi.org/10.1175/JAS-D-11-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tudurí, E., and C. Ramis, 1997: The environments of significant convective events in the western Mediterranean. Wea. Forecasting, 12, 294306, https://doi.org/10.1175/1520-0434(1997)012<0294:TEOSCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Delden, A., 1998: The synoptic setting of a thunder low and associated prefrontal squall line in western Europe. Meteor. Atmos. Phys., 65, 113131, https://doi.org/10.1007/BF01030272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and D. E. Kingsmill, 1995: Structure of an atmospheric undular bore generated from colliding boundaries during CaPE. Mon. Wea. Rev., 123, 13741393, https://doi.org/10.1175/1520-0493(1995)123<1374:SOAAUB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., and L. D. Carey, 2005: The development and structure of an oceanic squall line system during the South China Sea Monsoon Experiment. Mon. Wea. Rev., 133, 15441561, https://doi.org/10.1175/MWR2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T.-A., and Y.-L. Lin, 1999: Wave ducting in a stratified shear flow over a two-dimensional mountain. Part I: General linear theory. J. Atmos. Sci., 56, 412436, https://doi.org/10.1175/1520-0469(1999)056<0412:WDIASS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. T., B. E. Mapes, and M. Xu, 2003: Diurnal pattern of rainfall in northwestern south America. Part II: Model simulations. Mon. Wea. Rev., 131, 813829, https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 19902013, https://doi.org/10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and W. C. Skamarock, 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097, https://doi.org/10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolters, D., C. C. van Heerwaarden, J. V.-G. de Arllano, B. Cappelaere, and D. Ramier, 2010: Effects of soil moisture gradients on the path and the intensity of a West African squall line. Quart. J. Roy. Meteor. Soc., 136, 21622175, https://doi.org/10.1002/qj.712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze, 2010: Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate, 23, 58645888, https://doi.org/10.1175/2010JCLI3671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., D. B. Parsons, and Y. Wang, 2020: Wave disturbances and their role in the maintenance, structure, and evolution of a mesoscale convective system. J. Atmos. Sci., 77, 5177, https://doi.org/10.1175/JAS-D-18-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 32
Full Text Views 33 33 17
PDF Downloads 50 50 31

Squall Line Response to Coastal Mid-Atlantic Thermodynamic Heterogeneities

View More View Less
  • 1 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions
Restricted access

Abstract

Idealized 3D numerical simulations are used to quantify the impact of moving marine atmospheric boundary layers (MABLs) on squall lines in an environment representative of the U.S. mid-Atlantic coastal plain. Characteristics of the MABL, including depth and potential temperature, are varied. Squall lines are most intense while moving over the deepest MABLs, while the storm encountering no MABL is the weakest. Storm intensity is only sensitive to MABL temperature when the MABL is sufficiently deep. Collisions between the storm cold pools and MABLs transition storm lift from surface-based cold pools to wavelike features, with the resulting ascent mechanism dependent on MABL density, not depth. Bores form when the MABL is denser than the cold pool and hybrid cold pool–bores form when the densities are similar. While these features support storms over the MABL, the type of lifting mechanism does not control storm intensity alone. Storm intensity depends on the amplification and maintenance of these features, which is determined by the ambient conditions. Isolated convective cells form ahead of squall lines prior to the cold pool–MABL collision, resulting in a rain peak and the eventual discrete propagation of the storms. Cells form as storm-generated high-frequency gravity waves interact with gravity waves generated by the moving marine layers, in the presence of reduced stability by the squall line itself. No cells form in the presence of the storm or the MABL alone.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Lombardo, lombardo@psu.edu

Abstract

Idealized 3D numerical simulations are used to quantify the impact of moving marine atmospheric boundary layers (MABLs) on squall lines in an environment representative of the U.S. mid-Atlantic coastal plain. Characteristics of the MABL, including depth and potential temperature, are varied. Squall lines are most intense while moving over the deepest MABLs, while the storm encountering no MABL is the weakest. Storm intensity is only sensitive to MABL temperature when the MABL is sufficiently deep. Collisions between the storm cold pools and MABLs transition storm lift from surface-based cold pools to wavelike features, with the resulting ascent mechanism dependent on MABL density, not depth. Bores form when the MABL is denser than the cold pool and hybrid cold pool–bores form when the densities are similar. While these features support storms over the MABL, the type of lifting mechanism does not control storm intensity alone. Storm intensity depends on the amplification and maintenance of these features, which is determined by the ambient conditions. Isolated convective cells form ahead of squall lines prior to the cold pool–MABL collision, resulting in a rain peak and the eventual discrete propagation of the storms. Cells form as storm-generated high-frequency gravity waves interact with gravity waves generated by the moving marine layers, in the presence of reduced stability by the squall line itself. No cells form in the presence of the storm or the MABL alone.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly Lombardo, lombardo@psu.edu
Save