• Arnold, N. P., and W. M. Putman, 2018: Nonrotating convective self-aggregation in a limited area AGCM. J. Adv. Model. Earth Syst., 10, 10291046, https://doi.org/10.1002/2017MS001218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beucler, T., and T. W. Cronin, 2016: Moisture-radiative cooling instability. J. Adv. Model. Earth Syst., 8, 16201640, https://doi.org/10.1002/2016MS000763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beucler, T., T. W. Cronin, and K. A. Emanuel, 2018: A linear response framework for radiative-convective instability. J. Adv. Model. Earth Syst., 10, 19241951, https://doi.org/10.1029/2018MS001280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin, M., S. Sherwood, O. Geoffroy, S. Bony, and D. Fuchs, 2019: Identifying the sources of convective memory in cloud-resolving simulations. J. Atmos. Sci., 76, 947962, https://doi.org/10.1175/JAS-D-18-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppin, D., and S. Bony, 2015: Physical mechanisms controlling the initiation of convective self-aggregation in a general circulation model. J. Adv. Model. Earth Syst., 7, 20602078, https://doi.org/10.1002/2015MS000571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 7590, https://doi.org/10.1002/2013MS000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445468, https://doi.org/10.1002/qj.49712757211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C., and S. Woolnough, 2016: The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations. J. Adv. Model. Earth Syst., 8, 166195, https://doi.org/10.1002/2015MS000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19, 541576, https://doi.org/10.1029/RG019i004p00541.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2013: Convective self-aggregation cold pools, and domain size. Geophys. Res. Lett., 40, 994998, https://doi.org/10.1002/grl.50204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, https://doi.org/10.1175/JAS-D-11-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C., and S. Bony, 2015: What favors convective aggregation and why? Geophys. Res. Lett., 42, 56265634, https://doi.org/10.1002/2015GL064260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., B. Stevens, C. Hohenegger, and J. P. Mellado, 2017: A conceptual model of a shallow circulation induced by prescribed low-level radiative cooling. J. Atmos. Sci., 74, 31293144, https://doi.org/10.1175/JAS-D-17-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patrizio, C. R., and D. A. Randall, 2019: Sensitivity of convective self-aggregation to domain size. J. Adv. Model. Earth Syst., 11, 19952019, https://doi.org/10.1029/2019MS001672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessions, S. L., M. J. Herman, and S. Sentić, 2015: Convective response to changes in the thermodynamic environment in idealized weak temperature gradient simulations. J. Adv. Model. Earth Syst., 7, 712738, https://doi.org/10.1002/2015MS000446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sobel, A. H., G. Bellon, and J. Bacmeister, 2007: Multiple equilibra in a single-column model of the tropical atmosphere. Geophys. Res. Lett., 34, L22804, https://doi.org/10.1029/2007GL031320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stein, T. H. M., C. E. Holloway, I. Tobin, and S. Bony, 2017: Observed relationships between cloud vertical structure and convective aggregation over tropical ocean. J. Climate, 30, 21872207, https://doi.org/10.1175/JCLI-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, I., S. Bony, and R. Roca, 2012: Observational evidence for relationships between the degree of aggregation of deep convection, water vapor, surface fluxes, and radiation. J. Climate, 25, 68856904, https://doi.org/10.1175/JCLI-D-11-00258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998: Radiative-convective equilibrium in a three-dimensional cloud-ensemble model. Quart. J. Roy. Meteor. Soc., 124, 20732097, https://doi.org/10.1002/qj.49712455013.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and A. G. Semie, 2017: Organization of tropical convection in low vertical wind shears: Role of updraft entrainment. J. Adv. Model. Earth Syst., 9, 10461068, https://doi.org/10.1002/2016MS000802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, https://doi.org/10.1002/2013MS000269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2017: Convective self-aggregation in numerical simulations: A review. Surv. Geophys., 38, 11731197, https://doi.org/10.1007/s10712-017-9408-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2018a: Boundary layer height and buoyancy determine the horizontal scale of convective self-aggregation. J. Atmos. Sci., 75, 469478, https://doi.org/10.1175/JAS-D-17-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2018b: Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation. J. Adv. Model. Earth Syst., 10, 21632176, https://doi.org/10.1029/2017MS001261.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 78 78 20
Full Text Views 24 24 15
PDF Downloads 31 31 18

The Initiation of Dry Patches in Cloud-Resolving Convective Self-Aggregation Simulations: Boundary Layer Dry-Subsidence Feedback

View More View Less
  • 1 School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

Abstract

Self-aggregation of convection can be considered as the simultaneous occurrence of dry patch initiation/amplification and wet patch contraction/intensification from initially uniform moisture and temperature fields. As the twin of wet patches, dry patches play an important role in moisture and energy balance during convective self-aggregation. In this study, the WRF Model is used to study the initiation of dry patches in convective self-aggregation, especially the continuous drying in their boundary layer (BL). In the dry patch BL, increased air density leads to an enhanced high pressure anomaly, which drives an amplifying BL divergent flow and induces an amplifying BL subsidence. The virtual effect of drying by subsidence counteracts warming by subsidence and the BL process, further increasing BL air density. Our analysis indicates the existence of a dry-subsidence feedback, which leads to the initiation of dry patches in convective self-aggregation. This feedback is shown to be important even in very large-scale (3000 km × 9000 km) cloud-resolving convective self-aggregation simulations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn

Abstract

Self-aggregation of convection can be considered as the simultaneous occurrence of dry patch initiation/amplification and wet patch contraction/intensification from initially uniform moisture and temperature fields. As the twin of wet patches, dry patches play an important role in moisture and energy balance during convective self-aggregation. In this study, the WRF Model is used to study the initiation of dry patches in convective self-aggregation, especially the continuous drying in their boundary layer (BL). In the dry patch BL, increased air density leads to an enhanced high pressure anomaly, which drives an amplifying BL divergent flow and induces an amplifying BL subsidence. The virtual effect of drying by subsidence counteracts warming by subsidence and the BL process, further increasing BL air density. Our analysis indicates the existence of a dry-subsidence feedback, which leads to the initiation of dry patches in convective self-aggregation. This feedback is shown to be important even in very large-scale (3000 km × 9000 km) cloud-resolving convective self-aggregation simulations.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn
Save