• Abramson, B., J. Brown, W. Edwards, M. Murphy, and R. Winkler, 1996: Hailfinder: A Bayesian system for forecasting severe weather. Int. J. Forecast., 12, 5771, https://doi.org/10.1016/0169-2070(95)00664-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahadori, M. T., and Y. Liu, 2011: Granger causality analysis with hidden variables in climate science applications. First Int. Workshop on Climate Informatics, New York, NY, New York Academy of Sciences.

  • Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 16071623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 29532968, https://doi.org/10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1991: Low-frequency waves and traveling storm tracks. Part I: Barotropic component. J. Atmos. Sci., 48, 14201436, https://doi.org/10.1175/1520-0469(1991)048<1420:LFWATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1992: Frequency waves and traveling storm tracks. Part II: Three-dimensional structure. J. Atmos. Sci., 49, 25062524, https://doi.org/10.1175/1520-0469(1992)049<2506:FWATST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and H. M. van den Dool, 1994: Dynamical decomposition of low-frequency tendencies. J. Atmos. Sci., 51, 20862100, https://doi.org/10.1175/1520-0469(1994)051<2086:DDOLFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Liu, H. Liu, and J. G. Carbonell, 2010: Learning spatial-temporal varying graphs with applications to climate data analysis. Proc. 24th Conf. on Artificial Intelligence, Atlanta, GA, Association for the Advancement of Artificial Intelligence, 425–430.

  • Chu, T., D. Danks, and C. Glymour, 2005: Data driven methods for nonlinear granger causality: Climate teleconnection mechanisms. Carnegie Mellon University Dept. of Philosophy Tech. Rep. CMU-PHIL-171, 19 pp.

  • Cofino, A., R. Cano, C. Sordo, and J. Gutierrez, 2002: Bayesian networks for probabilistic weather prediction. Proc. 15th European Conf. on Artificial Intelligence, Lyon, France, European Coordinating Committee for Artificial Intelligence, 695–700.

  • Colombo, D., and M. H. Maathuis, 2012: Order-independent constraint-based causal structure learning. arXiv, https://arxiv.org/abs/1211.3295.

  • Colombo, D., and M. H. Maathuis, 2014: Order-independent constraint-based causal structure learning. J. Mach. Learn. Res., 15, 37413782.

    • Search Google Scholar
    • Export Citation
  • Cossention, M., F. Raimondi, and M. Vitale, 2001: Bayesian models of the pm 10 atmospheric urban pollution. Proc. Ninth Int. Conf. on Modeling, Monitoring and Management of Air Pollution, Ancona, Italy, Wessex Institute, 143–152.

  • Cuff, T., and M. Cai, 1995: Interaction between the low- and high-frequency transients in the Southern Hemisphere winter circulation. Tellus, 47A, 331350, https://doi.org/10.3402/tellusa.v47i3.11521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., and M. Mak, 2006: Nature of the differences in the intraseasonal variability of the Pacific and Atlantic storm tracks: A diagnostic study. J. Atmos. Sci., 63, 26022615, https://doi.org/10.1175/JAS3749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., and T. Jiang, 2011: Intraseasonal modulation of the North Pacific storm track by tropical convection in boreal winter. J. Climate, 24, 11221137, https://doi.org/10.1175/2010JCLI3676.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Y., and I. Ebert-Uphoff, 2014: Weakening of atmospheric information flow in a warming climate in the Community Climate System Model. Geophys. Res. Lett., 41, 193200, https://doi.org/10.1002/2013GL058646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dole, R. M., and R. X. Black, 1990: Life cycles of persistent anomalies. Part II: The development of persistent negative height anomalies over the North Pacific Ocean. Mon. Wea. Rev., 118, 824846, https://doi.org/10.1175/1520-0493(1990)118<0824:LCOPAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert-Uphoff, I., and Y. Deng, 2012a: Causal discovery for climate research using graphical models. J. Climate, 25, 56485665, https://doi.org/10.1175/JCLI-D-11-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert-Uphoff, I., and Y. Deng, 2012b: A new type of climate network based on probabilistic graphical models: Results of boreal winter versus summer. Geophys. Res. Lett., 39, L19701, https://doi.org/10.1029/2012GL053269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert-Uphoff, I., and Y. Deng, 2017: Causal discovery in the geosciences—Using synthetic data to learn how to interpret results. Comput. Geosci., 99, 5060, https://doi.org/10.1016/j.cageo.2016.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, J. S. A., 1977: The weather during July 1976: Some dynamical considerations of the drought. Weather, 32, 120126, https://doi.org/10.1002/j.1477-8696.1977.tb04532.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1980: Estimation of nonlinear energy transfer spectra by the cross-spectral method. J. Atmos. Sci., 37, 299307, https://doi.org/10.1175/1520-0469(1980)037<0299:EONETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hlinka, J., D. Hartman, M. Vejmelka, J. Runge, N. Marwan, J. Kurths, and M. Paluš, 2013: Reliability of inference of directed climate networks using conditional mutual information. Entropy, 15, 20232045, https://doi.org/10.3390/e15062023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, T., Y. Deng, and W. Li, 2013a: Local kinetic energy budget of high-frequency and intermediate-frequency eddies: Winter climatology and interannual variability. Climate Dyn., 41, 961976, https://doi.org/10.1007/s00382-013-1684-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, T., K. J. Evans, Y. Deng, and X. Dong, 2013b: Intermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges. J. Geophys. Res. Atmos., 119, 37233735, https://doi.org/10.1002/2013JD021209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koller, D., and N. Friedman, 2009: Probabilistic Graphical Models: Principles and Techniques. 1st ed. MIT Press, 1280 pp.

  • Kretschmer, M., D. Coumou, J. F. Donges, and J. Runge, 2016: Using causal effect networks to analyze different arctic drivers of midlatitude winter circulation. J. Climate, 29, 40694081, https://doi.org/10.1175/JCLI-D-15-0654.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328, https://doi.org/10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2013: The Liang-Kleeman information flow: Theory and applications. Entropy, 15, 327360, https://doi.org/10.3390/e15010327.

  • Liang, X. S., 2014: Unraveling the cause-effect relation between time series. Phys. Rev., 90E, 052150, https://doi.org/10.1103/PhysRevE.90.052150.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016a: Canonical transfer and multiscale energetics for primitive and quasi-geostrophic atmospheres. J. Atmos. Sci., 73, 44394468, https://doi.org/10.1175/JAS-D-16-0131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2016b: Information flow and causality as rigorous notions ab initio. Phys. Rev., 94E, 052201, https://doi.org/10.1103/PhysRevE.94.052201.

    • Search Google Scholar
    • Export Citation
  • Liang, X. S., 2019: A study of the cross-scale causation and information flow in a stormy model mid-latitude atmosphere, Entropy, 21, 149, https://doi.org/10.3390/e21020149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and R. Kleeman, 2007a: A rigorous formalism of information transfer between dynamical system components. I. Discrete mapping. Physica D, 231, 19, https://doi.org/10.1016/j.physd.2007.04.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and R. Kleeman, 2007b: A rigorous formalism of information transfer between dynamical system components. II. Continuous flow. Physica D, 227, 173182, https://doi.org/10.1016/j.physd.2006.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X. S., and A. Lozano-Duran, 2016: A preliminary study of the causal structure in fully developed near-wall turbulence. Stanford, CA, Stanford University Center for Turbulence Research, 233–242.

  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., and X. S. Liang, 2017: Multiscale dynamical processes underlying the wintertime Atlantic blockings. J. Atmos. Sci., 74, 38153831, https://doi.org/10.1175/JAS-D-16-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maeda, S., C. Kobayashi, K. Takano, and T. Tsuyuki, 2000: Relationship between singular modes of blocking flow and high-frequency eddies. J. Meteor. Soc. Japan, 78, 631646, https://doi.org/10.2151/jmsj1965.78.5_631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mak, M., and Y. Deng, 2006: Diagnostic and dynamical analyses of two outstanding aspects of storm tracks. Dyn. Atmos. Oceans, 43, 8099, https://doi.org/10.1016/j.dynatmoce.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Materassi, M., G. Consolini, N. Smith, and R. De Marco, 2014: Information theory analysis of cascading process in a synthetic model of fluid turbulence. Entropy, 16, 12721286, https://doi.org/10.3390/e16031272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and J. M. Wallace, 1993: Synoptic behavior of baroclinic eddies during the blocking onset. Mon. Wea. Rev., 121, 18921903, https://doi.org/10.1175/1520-0493(1993)121<1892:SBOBED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neapolitan, R. E., 2003: Learning Bayesian Networks. Prentice Hall, 647 pp.

  • Paluš, M., 2014: Cross-scale interactions and information transfer. Entropy, 16, 52635289, https://doi.org/10.3390/e16105263.

  • Park, T., Y. Deng, W. Li, S. Yang, and M. Cai, 2015: Mass footprints of the North Pacific atmospheric blocking highs. J. Climate, 28, 49414949, https://doi.org/10.1175/JCLI-D-14-00598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearl, J., 1988: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 2nd ed. Morgan Kaufman Publishers, 552 pp.

    • Crossref
    • Export Citation
  • Pearl, J., 2000: Causality: Models, Reasoning and Inference. Cambridge University Press, 384 pp.

  • Ramsey, J. D., and B. Andrews, 2017: A comparison of public causal search packages on linear, Gaussian data with no latent variables. arXiv, https://arxiv.org/abs/1709.04240.

  • Robinson, W. A., 1991: The dynamics of zonal index in a simple model of the atmosphere. Tellus, 43A, 295305, https://doi.org/10.3402/tellusa.v43i5.11953.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, W. A., 1996: Does eddy feedback sustain variability in the zonal index? J. Atmos. Sci., 53, 35563569, https://doi.org/10.1175/1520-0469(1996)053<3556:DEFSVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, J., 2018: Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos, 28, 075310, https://doi.org/10.1063/1.5025050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Runge, J., J. Heitzig, N. Marwan, and J. Kurths, 2012: Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev., 86, 061121, https://doi.org/10.1103/physreve.86.061121.

    • Search Google Scholar
    • Export Citation
  • Runge, J., P. Nowack, M. Kretschmer, S. Flaxman, and D. Sejdinovic, 2018: Detecting causal associations in large nonlinear time series datasets. arXiv, https://arxiv.org/abs/1702.07007.

  • Runge, J., and Coauthors, 2019: Inferring causation from time series in Earth system sciences. Nat. Commun., 10, 2553, https://doi.org/10.1038/s41467-019-10105-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samarasinghe, S., Y. Deng, and I. Ebert-Uphoff, 2017: Structure learning in spectral space with applications in climate science. Proc. 17th Int. Conf. on Data Mining, Houston, TX, Society for Industrial and Applied Mathematics.

  • Sheng, J., and Y. Hayashi, 1990: Observed and simulated energy cycles in the frequency domain. J. Atmos. Sci., 47, 12431254, https://doi.org/10.1175/1520-0469(1990)047<1243:OASECI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., and J. Derome, 1991: An observational study of the energy transfer between the seasonal mean flow and transient eddies. Tellus, 43A, 128144, https://doi.org/10.3402/tellusa.v43i2.11921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheng, J., and J. Derome, 1993: Dynamic forcing of the slow transients by synoptic-scale eddies: An observational study. J. Atmos. Sci., 50, 757771, https://doi.org/10.1175/1520-0469(1993)050<0757:DFOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spirtes, P., and C. Glymour, 1991: An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev., 9, 6272, https://doi.org/10.1177/089443939100900106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spirtes, P., C. Glymour, and R. Scheines, 1993: Causation, Prediction, and Search. 1st ed. Lecture Notes in Statistics, Vol. 81, Springer Verlag, 526 pp.

    • Crossref
    • Export Citation
  • Spirtes, P., C. Glymour, and R. Scheines, 2000: Causation, Prediction, and Search. 2nd ed. MIT Press, 546 pp.

    • Crossref
    • Export Citation
  • Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 60216032, https://doi.org/10.1175/2009JCLI3100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugihara, G., and Coauthors, 2012: Detecting causality in complex ecosystems. Science, 338, 496500, https://doi.org/10.1126/science.1227079.

  • Xu, F., and X. S. Liang, 2017: On the generation and maintenance of the 2012/13 sudden stratospheric warming. J. Atmos. Sci., 74, 32093228, https://doi.org/10.1175/JAS-D-17-0002.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, J.-Y., and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple GCM of the atmosphere. J. Atmos. Sci., 50, 32443259, https://doi.org/10.1175/1520-0469(1993)050<3244:ZFVAEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerenner, T., P. Friedrichs, K. Lehnerts, and A. Hense, 2014: A Gaussian graphical model approach to climate networks. Chaos, 24, 023103, https://doi.org/10.1063/1.4870402.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 38 38 29
Full Text Views 6 6 5
PDF Downloads 5 5 4

A Causality-Based View of the Interaction between Synoptic- and Planetary-Scale Atmospheric Disturbances

View More View Less
  • 1 Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
  • 2 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia
  • 3 Electrical and Computer Engineering, and Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
© Get Permissions
Restricted access

Abstract

This paper reports preliminary yet encouraging findings on the use of causal discovery methods to understand the interaction between atmospheric planetary- and synoptic-scale disturbances in the Northern Hemisphere. Specifically, constraint-based structure learning of probabilistic graphical models is applied to the spherical harmonics decomposition of the daily 500-hPa geopotential height field in boreal winter for the period 1948–2015. Active causal pathways among different spherical harmonics components are identified and documented in the form of a temporal probabilistic graphical model. Since, by definition, the structure learning algorithm used here only robustly identifies linear causal effects, we report only causal pathways between two groups of disturbances with sufficiently large differences in temporal and/or spatial scales, that is, planetary-scale (mainly zonal wavenumbers 1–3) and synoptic-scale disturbances (mainly zonal wavenumbers 6–8). Daily reconstruction of geopotential heights using only interacting scales suggest that the modulation of synoptic-scale disturbances by planetary-scale disturbances is best characterized by the flow of information from a zonal wavenumber-1 disturbance to a synoptic-scale circumglobal wave train whose amplitude peaks at the North Pacific and North Atlantic storm-track region. The feedback of synoptic-scale to planetary-scale disturbances manifests itself as a zonal wavenumber-2 structure driven by synoptic-eddy momentum fluxes. This wavenumber-2 structure locally enhances the East Asian trough and western Europe ridge of the wavenumber-1 planetary-scale disturbance that actively modulates the activity of synoptic-scale disturbances. The winter-mean amplitude of the actively interacting disturbances are characterized by pronounced fluctuations across interannual to decadal time scales.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Deng, yi.deng@eas.gatech.edu

Abstract

This paper reports preliminary yet encouraging findings on the use of causal discovery methods to understand the interaction between atmospheric planetary- and synoptic-scale disturbances in the Northern Hemisphere. Specifically, constraint-based structure learning of probabilistic graphical models is applied to the spherical harmonics decomposition of the daily 500-hPa geopotential height field in boreal winter for the period 1948–2015. Active causal pathways among different spherical harmonics components are identified and documented in the form of a temporal probabilistic graphical model. Since, by definition, the structure learning algorithm used here only robustly identifies linear causal effects, we report only causal pathways between two groups of disturbances with sufficiently large differences in temporal and/or spatial scales, that is, planetary-scale (mainly zonal wavenumbers 1–3) and synoptic-scale disturbances (mainly zonal wavenumbers 6–8). Daily reconstruction of geopotential heights using only interacting scales suggest that the modulation of synoptic-scale disturbances by planetary-scale disturbances is best characterized by the flow of information from a zonal wavenumber-1 disturbance to a synoptic-scale circumglobal wave train whose amplitude peaks at the North Pacific and North Atlantic storm-track region. The feedback of synoptic-scale to planetary-scale disturbances manifests itself as a zonal wavenumber-2 structure driven by synoptic-eddy momentum fluxes. This wavenumber-2 structure locally enhances the East Asian trough and western Europe ridge of the wavenumber-1 planetary-scale disturbance that actively modulates the activity of synoptic-scale disturbances. The winter-mean amplitude of the actively interacting disturbances are characterized by pronounced fluctuations across interannual to decadal time scales.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yi Deng, yi.deng@eas.gatech.edu
Save