• Albrecht, R. I., S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, https://doi.org/10.1175/BAMS-D-14-00193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. J. Geophys. Res., 107, 4792, https://doi.org/10.1029/2002JD002457.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alfaro, D. A., 2017: Low-tropospheric shear in the structure of squall lines: Impacts on latent heating under layer-lifting ascent. J. Atmos. Sci., 74, 229248, https://doi.org/10.1175/JAS-D-16-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, D. J., and K. E. Pickering, 2002: Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res., 107, 4711, https://doi.org/10.1029/2002JD002066.

    • Search Google Scholar
    • Export Citation
  • Altinger de Schwarzkopf, M. L., and L. C. Rosso, 1982: Severe storms and tornadoes in Argentina. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 59–62.

  • Amador, J. A., and V. Magaña, 1999: Dynamics of the low level jet over the Caribbean Sea. Preprints, Third Conf. on Hurricanes and Tropical Meteorology, Dallas, TX, Amer. Meteor. Soc., 868–869.

  • Anderson, B. T., and J. O. Roads, 2001: Summertime moisture divergence over the southwestern US and northwestern Mexico. Geophys. Res. Lett., 28, 19731976, https://doi.org/10.1029/2001GL012903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aspliden, J. P., Y. Tourre, and J. B. Sabine, 1976: Some climatological aspects of West African disturbance lines during GATE. Mon. Wea. Rev., 104, 10291035, https://doi.org/10.1175/1520-0493(1976)104<1029:SCAOWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., R. M. Wakimoto, and C. L. Ziegler, 1998: Observations of the finescale structure of a dryline during VORTEX 95. Mon. Wea. Rev., 126, 525550, https://doi.org/10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., and C. W. Newton, 1986: Thunderstorms in the synoptic setting. Thunderstorm Morphology and Dynamics, 2nd ed. E. Kessler, Ed., University of Oklahoma Press, 75–112.

  • Barron, J. A., S. E. Metcalfe, and J. A. Addison, 2012: Response of the North American monsoon to regional changes in ocean surface temperature. Paleoceanography, 27, PA3206, https://doi.org/10.1029/2011PA002235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barros, A. P., and T. J. Lang, 2003: Monitoring the monsoon in the Himalayas: Observations in central Nepal, June 2001. Mon. Wea. Rev., 131, 14081427, https://doi.org/10.1175/1520-0493(2003)131<1408:MTMITH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barthe, C., W. Deierling, and M. C. Barth, 2010: Estimation of total lightning from various storm parameters: A cloud-resolving model study. J. Geophys. Res., 115, D24202, https://doi.org/10.1029/2010JD014405.

    • Search Google Scholar
    • Export Citation
  • Basarab, B. M., S. A. Rutledge, and B. R. Fuchs, 2015: An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models. J. Geophys. Res. Atmos., 120, 94819499, https://doi.org/10.1002/2015JD023470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beebe, R. G., 1958: An instability line development as observed by the tornado research airplane. J. Meteor., 15, 278282, https://doi.org/10.1175/1520-0469(1958)015<0278:AILDAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev., 114, 307329, https://doi.org/10.1175/1520-0493(1986)114<0307:SEOSHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14, 121137, https://doi.org/10.1175/1520-0442(2001)013<0121:MMAOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G. J., and C. Thorncroft, 2005: Case study of an intense African easterly wave. Mon. Wea. Rev., 133, 752766, https://doi.org/10.1175/MWR2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, https://doi.org/10.1175/2009JCLI2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blakeslee, R., and W. Koshak, 2016: LIS on ISS: Expanded global coverage and enhanced applications. The Earth Observer, Vol. 28, No. 3, EOS Project Science Office, Greenbelt, MD, 4–14, https://eospso.gsfc.nasa.gov/sites/default/files/eo_pdfs/May_June_2016_color%20508.pdf.

  • Blanchard, D. O., and R. E. Lopez, 1985: Spatial patterns of convection in south Florida. Mon. Wea. Rev., 113, 12821299, https://doi.org/10.1175/1520-0493(1985)113<1282:SPOCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas storm of 7 May 1986. Mon. Wea. Rev., 116, 17901804, https://doi.org/10.1175/1520-0493(1988)116<1790:MSOOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and B. Stevens, 2006: Principal component analysis of the summertime winds over the Gulf of California: A gulf surge index. Mon. Wea. Rev., 134, 33953414, https://doi.org/10.1175/MWR3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenner, I. S., 1974: A surge of maritime tropical air—Gulf of California to the southwestern United States. Mon. Wea. Rev., 102, 375389, https://doi.org/10.1175/1520-0493(1974)102<0375:ASOMTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., L. Liu, P. C. Kennedy, and V. Chandrasekar, 1996: Dual multiparameter radar observations of intense convective storms: The 24 June 1992 case study. Meteor. Atmos. Phys., 59, 331, https://doi.org/10.1007/BF01031999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, https://doi.org/10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 10771089, https://doi.org/10.1175/1520-0442(1993)006<1077:EOCPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., 1972: Origin and structure of easterly waves in lower troposphere of North Africa. J. Atmos. Sci., 29, 7790, https://doi.org/10.1175/1520-0469(1972)029<0077:TOASOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burpee, R. W., and L. N. Lahiff, 1984: Area-average rainfall variations on sea-breeze days in south Florida. Mon. Wea. Rev., 112, 520534, https://doi.org/10.1175/1520-0493(1984)112<0520:AARVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the Florida Peninsula. J. Meteor., 5, 275280, https://doi.org/10.1175/1520-0469(1948)005<0275:COTOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. J. Meteor. Atmos. Phys., 59, 3364, https://doi.org/10.1007/BF01032000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, L. D., W. A. Petersen, and S. A. Rutledge, 2003: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Wea. Rev., 131, 18111831, https://doi.org/10.1175//2566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1969: Some remarks on African disturbances and their progress over tropical Atlantic. Mon. Wea. Rev., 97, 716726, https://doi.org/10.1175/1520-0493(1969)097<0716:SROADA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and F. H. Ludlam, 1968: Conditions for the occurrence of severe local storms. Tellus, 20, 203226, https://doi.org/10.3402/tellusa.v20i2.10002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., S. G. Benjamin, and G. S. Forbes, 1983: Elevated mixed layers in the regional severe storm environment: Conceptual model and case studies. Mon. Wea. Rev., 111, 14531474, https://doi.org/10.1175/1520-0493(1983)111<1453:EMLITR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., 2009: Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteor. Climatol., 48, 12811286, https://doi.org/10.1175/2009JAMC2125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, https://doi.org/10.1175/JCLI-D-11-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., S. J. Goodman, D. J. Boccippio, E. J. Zipser, and S. W. Nesbitt, 2005: Three years of TRMM precipitation features. Part I: Radar, radiometric, and lightning characteristics. Mon. Wea. Rev., 133, 543566, https://doi.org/10.1175/MWR-2876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., D. E. Buechler, and R. J. Blakeslee, 2015: TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J. Climate, 28, 65366547, https://doi.org/10.1175/JCLI-D-15-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cetrone, J., and R. A. Houze, 2011: Leading and trailing anvil clouds of West African squall lines. J. Atmos. Sci., 68, 11141123, https://doi.org/10.1175/2011JAS3580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaggar, T. S., 1977: Geographical distribution of monthly and annual mean frequency of thunderstorm days over eastern Africa. East African Meteorological Department Tech. Memo. 26, 22 pp.

  • Chaves, R. R., and I. F. Cavalcanti, 2001: Atmospheric circulation features associated with rainfall variability over southern northeast Brazil. Mon. Wea. Rev., 129, 26142626, https://doi.org/10.1175/1520-0493(2001)129<2614:ACFAWR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., and Coauthors, 2003: Frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., R. L. George, P. J. Wetzel, and R. L. McAnelly, 1983: A long-lived mesoscale convective complex. Part I: The mountain-generated component. Mon. Wea. Rev., 111, 18931918, https://doi.org/10.1175/1520-0493(1983)111<1893:ALLMCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curran, E. B., R. L. Holle, and R. E. López, 2000: Lightning casualties and damages in the United States from 1959 to 1994. J. Climate, 13, 34483464, https://doi.org/10.1175/1520-0442(2000)013<3448:LCADIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M., H. Höller, and U. Schumann, 2011: Modeling the flash rate of thunderstorms. Part I: Framework. Mon. Wea. Rev., 139, 30933111, https://doi.org/10.1175/MWR-D-10-05031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., and W. A. Petersen, 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, https://doi.org/10.1029/2007JD009598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deierling, W., W. A. Petersen, J. Latham, S. Ellis, and H. J. Christian, 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, https://doi.org/10.1029/2007JD009700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, L., M. Martinez, J. Ramírez, and J. Rodriguez, 2009: Actualización de la actividad de rayos en Venezuela, empleando la información del proyecto satelital de la NASA. Congreso Venezolano de Redes y Energía Eléctrica, Porlamar, Venezuela, Comité Nacional Venezolano de CIGRÉ, B2-223.

  • Doswell, C. A., III, 1984: A kinematic analysis of frontogenesis associated with a nondivergent vortex. J. Atmos. Sci., 41, 12421248, https://doi.org/10.1175/1520-0469(1984)041<1242:AKAOFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2001: Severe convective storms—An overview. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 1–26.

    • Crossref
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durán-Quesada, A. M., M. Reboita, and L. Gimeno, 2012: Precipitation in tropical America and the associated sources of moisture: A short review. Hydrol. Sci. J., 57, 612624, https://doi.org/10.1080/02626667.2012.673723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., and T. L. Mote, 2009: A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol., 30, 418431, https://doi.org/10.1002/joc.1893.

    • Search Google Scholar
    • Export Citation
  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American monsoon experiment. Mon. Wea. Rev., 138, 35403555, https://doi.org/10.1175/2010MWR3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., and A. Reiner, 2003: Spatiotemporal variability of the relation between African easterly waves and West African squall lines in 1998 and 1999. J. Geophys. Res., 108, 4332, https://doi.org/10.1029/2002JD002816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finney, D. L., R. M. Doherty, O. Wild, H. Huntrieser, H. C. Pumphrey, and A. M. Blyth, 2014: Using cloud ice flux to parametrise large-scale lightning. Atmos. Chem. Phys., 14, 12 66512 682, https://doi.org/10.5194/acp-14-12665-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T., 1958: Structure and movement of a dry front. Bull. Amer. Meteor. Soc., 39, 574582, https://doi.org/10.1175/1520-0477-39.11.574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fulks, J. R., 1951: The instability line. Compendium of Meteorology, T. F. Malone, Ed., Amer. Meteor. Soc., 647–652.

    • Crossref
    • Export Citation
  • Gallo, K., T. Smith, K. Jungbluth, and P. Schumacher, 2012: Hail swaths observed from satellite data and their relation to radar and surface-based observations: A case study from Iowa in 2009. Wea. Forecasting, 27, 796802, https://doi.org/10.1175/WAF-D-11-00118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glass, F. H., D. L. Ferry, J. T. Moore, and S. M. Nolan, 1995: Characteristics of heavy convective rainfall events across the mid-Mississippi valley during the warm season: Meteorological conditions and a conceptual model. Preprints, 14th Conf. on Weather Analysis and Forecasting, Dallas, TX, Amer. Meteor. Soc., 34–41.

  • Green, C. R., and W. D. Sellers, Eds., 1964: Arizona Climate. University of Arizona Press, 503 pp.

  • Guy, N., and S. A. Rutledge, 2012: Regional comparison of West African convective characteristics: A TRMM-based climatology. Quart. J. Roy. Meteor. Soc., 138, 11791195, https://doi.org/10.1002/qj.1865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100, 298306, https://doi.org/10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hane, C. E., H. B. Bluestein, T. M. Crawford, M. E. Baldwin, and R. M. Rabin, 1997: Severe thunderstorm development in relation to along-dryline variability: A case study. Mon. Wea. Rev., 125, 231251, https://doi.org/10.1175/1520-0493(1997)125<0231:STDIRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoch, J., and P. Markowski, 2005: A climatology of springtime dryline position in the U.S. Great Plains region. J. Climate, 18, 21322137, https://doi.org/10.1175/JCLI3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., D. C. Wilton, and B. F. Smull, 2007: Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteor. Soc., 133, 13891411, https://doi.org/10.1002/QJ.106.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr, K. L. Rasmussen, M. D. Zuluaga, and S. R. Brodzik, 2015: The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the tropical rainfall measuring mission satellite. Rev. Geophys., 53, 9941021, https://doi.org/10.1002/2015RG000488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hubert, H., 1926: Nouvelles Études sur la Météorologie de l’Afrique Occidentale Française. Publications du Gouverneur Général de l’Afrique-Occidentale Française.

  • Jackson, B., S. E. Nicholson, and D. Klotter, 2009: Mesoscale convective systems over western equatorial Africa and their relationship to large-scale circulation. Mon. Wea. Rev., 137, 12721294, https://doi.org/10.1175/2008MWR2525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., 1982: A synoptic climatology of northwest flow severe weather outbreaks. Part I: Nature and significance. Mon. Wea. Rev., 110, 16531663, https://doi.org/10.1175/1520-0493(1982)110<1653:ASCONF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, https://doi.org/10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, and J. A. Cotturone, 2001: Multiscale variability of the atmospheric mixed layer over the western Pacific warm pool. J. Atmos. Sci., 58, 27292750, https://doi.org/10.1175/1520-0469(2001)058<2729:MVOTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, B. D. McNoldy, P. J. Rogers, and R. K. Taft, 2007: Multiscale variability of the flow during the North American Monsoon Experiment. J. Climate, 20, 16281648, https://doi.org/10.1175/JCLI4087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 2011: Progress in understanding of weather systems in West Africa. Atmos. Sci. Lett., 12, 712, https://doi.org/10.1002/asl.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lal, D. M., and S. D. Pawar, 2009: Relationship between rainfall and lightning over central Indian region in monsoon and premonsoon seasons. Atmos. Res., 92, 402410, https://doi.org/10.1016/j.atmosres.2008.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and S. A. Rutledge, 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506, https://doi.org/10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, https://doi.org/10.1029/2005JD006063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453466, https://doi.org/10.1029/2012JD018409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2015: The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett., 42, 35913595, https://doi.org/10.1002/2015GL063776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, https://doi.org/10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., D. J. Cecil, E. J. Zipser, K. Kronfeld, and R. Robertson, 2012: Relationships between lightning flash rates and radar reflectivity vertical structures in thunderstorms over the tropics and subtropics. J. Geophys. Res., 117, D06212, https://doi.org/10.1029/2011JD017123.

    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2016: Global distribution of deep convection reaching tropopause in 1 year GPM observations. J. Geophys. Res. Atmos., 121, 38243842, https://doi.org/10.1002/2015JD024430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, N., and C. Liu, 2018: Synoptic environments and characteristics of convection reaching the tropopause over northeast China. Mon. Wea. Rev., 146, 745759, https://doi.org/10.1175/MWR-D-17-0245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, M. E., 1966: Cloud seeding trials in the rainy belt of western Colombia. Water Resour. Res., 2, 811823, https://doi.org/10.1029/WR002i004p00811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697, https://doi.org/10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142, https://doi.org/10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magaña, V., J. A. Amador, and S. Medina, 1999: The midsummer drought over Mexico and Central America. J. Climate, 12, 15771588, https://doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., W. R. Soares, C. Saulo, and M. Nicolini, 2004: Climatology of the low level jet east of the Andes as derived from the NCEP–NCAR reanalyses: Characteristics and temporal variability. J. Climate, 17, 22612280, https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • May, P. T., 1996: The organization of convection in the rainbands of Tropical Cyclone Laurence. Mon. Wea. Rev., 124, 807815, https://doi.org/10.1175/1520-0493(1996)124<0807:TOOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCarthy, J., and S. E. Koch, 1982: The evolution of an Oklahoma dryline. Part I: A meso- and subsynoptic-scale analysis. J. Atmos. Sci., 39, 225236, https://doi.org/10.1175/1520-0469(1982)039<0225:TEOAOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, D., R. Maddox, and K. Howard, 1995: Case study of a severe mesoscale convective system in central Arizona. Wea. Forecasting, 10, 643665, https://doi.org/10.1175/1520-0434(1995)010<0643:CSOASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNulty, R. P., 1978: On upper tropospheric kinematics and severe weather occurrence. Mon. Wea. Rev., 106, 662672, https://doi.org/10.1175/1520-0493(1978)106<0662:OUTKAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., R. A. Houze Jr., A. Kumar, and D. Niyogi, 2010: Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart. J. Roy. Meteor. Soc., 136, 593616, https://doi.org/10.1002/qj.601.

    • Search Google Scholar
    • Export Citation
  • Meijer, E., P. van Velthoven, D. Brunner, H. Huntrieser, and H. Kelder, 2001: Improvement and evaluation of the parameterisation of nitrogen oxide production by lightning. Phys. Chem. Earth, 26, 577583, https://doi.org/10.1016/s1464-1917(01)00050-2.

    • Search Google Scholar
    • Export Citation
  • Mekonnen, A., C. D. Thorncroft, and A. R. Aiyyer, 2006: Analysis of convection and its association with African easterly waves. J. Climate, 19, 54055421, https://doi.org/10.1175/JCLI3920.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, D., and J. M. Fritsch, 1991: Mesoscale convective complexes in the western Pacific region. Mon. Wea. Rev., 119, 29782992, https://doi.org/10.1175/1520-0493(1991)119<2978:MCCITW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R., 1972: Notes on analysis and severe-storm forecasting procedures of the Air Force Global Weather Central. Air Weather Service Tech. Rep. 200, 190 pp.

  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Defining mesoscale convective systems by their 85-GHz ice-scattering signatures. Bull. Amer. Meteor. Soc., 77, 11791189, https://doi.org/10.1175/1520-0477(1996)077<1179:DMCSBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., E. R. Toracinta, E. J. Zipser, and R. E. Orville, 1996: A comparison of WSR-88D reflectivities, SSM/I brightness temperatures, and lightning for mesoscale convective systems in Texas. Part II: SSM/I brightness temperatures and lightning. J. Appl. Meteor., 35, 919931, https://doi.org/10.1175/1520-0450(1996)035<0919:ACOWRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, J. T., F. H. Glass, C. E. Graves, S. M. Rochette, and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861878, https://doi.org/10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., S. W. Nesbitt, R. J. Trapp, K. L. Rasmussen, and P. V. Salio, 2018: Convective storm life cycle and environments near the Sierras de Córdoba, Argentina. Mon. Wea. Rev., 146, 25412557, https://doi.org/10.1175/MWR-D-18-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphey, H. V., R. M. Wakimoto, C. Flamant, and D. E. Kingsmill, 2006: Dryline on 19 June 2002 during IHOP. Part I: Airborne Doppler and LEANDRE II analyses of the thin line structure and convection initiation. Mon. Wea. Rev., 134, 406430, https://doi.org/10.1175/MWR3063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nascimento, E. L., and C. A. Doswell III, 2006: The need for an improved documentation of severe thunderstorms and tornadoes in South America. Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.18, https://ams.confex.com/ams/Annual2006/techprogram/paper_102247.htm.

  • Newman, A. J., and R. H. Johnson, 2012: Mechanisms for precipitation enhancement in a North American monsoon upper-tropospheric trough. J. Atmos. Sci., 69, 17751792, https://doi.org/10.1175/JAS-D-11-0223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida Peninsula. Mon. Wea. Rev., 119, 298323, https://doi.org/10.1175/1520-0493(1991)119<0298:ATDNIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S. D., and K. I. Mohr, 2010: An analysis of the environments of intense convective systems in West Africa in 2003. Mon. Wea. Rev., 138, 37213739, https://doi.org/10.1175/2010MWR3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 1996: A review of climate dynamics and climate variability in eastern Africa. The Limnology, Climatology and Paleoclimatology of the East African Lakes, T. C. Johnson and E. O. Odada, Eds., Gordon and Breach, 25–56.

    • Crossref
    • Export Citation
  • Nicholson, S. E., 2009: A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn., 32, 11551171, https://doi.org/10.1007/s00382-008-0514-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S. E., 2018: The ITCZ and the seasonal cycle over equatorial Africa. Bull. Amer. Meteor. Soc., 99, 337348, https://doi.org/10.1175/BAMS-D-16-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieto Ferreira, R., T. M. Rickenbach, D. L. Herdies, and L. M. V. Carvalho, 2003: Variability of South American convective cloud systems and tropospheric circulation during January–March 1998 and 1999. Mon. Wea. Rev., 131, 961973, https://doi.org/10.1175/1520-0493(2003)131<0961:VOSACC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 26402653, https://doi.org/10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., C. D. Thorncroft, R. R. Burton, and A. Diongue-Niang, 2005: Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Quart. J. Roy. Meteor. Soc., 131, 14611482, https://doi.org/10.1256/qj.03.189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pessi, A. T., and S. Businger, 2009: Relationships among lightning, precipitation, and hydrometeor characteristics over the North Pacific Ocean. J. Appl. Meteor. Climatol., 48, 833848, https://doi.org/10.1175/2008JAMC1817.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602620, https://doi.org/10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., H. J. Christian, and S. A. Rutledge, 2005: TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett., 32, L14819, https://doi.org/10.1029/2005GL023236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peterson, R. E., 1983: The west Texas dryline: Occurrence and behavior. Preprints, 13th Conf. Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., J9–J11.

  • Pielke, R. A., A. Song, P. J. Michaels, W. A. Lyons, and R. W. Arritt, 1991: The predictability of sea-breeze generated thunderstorms. Atmósfera, 4, 6578.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., and Coauthors, 2004: Thunderstorm and lightning characteristics associated with sprites in Brazil. Geophys. Res. Lett., 31, L13103, https://doi.org/10.1029/2004GL020264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poveda, G., and O. J. Mesa, 2000: On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett., 27, 16751678, https://doi.org/10.1029/1999GL006091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poveda, G., P. R. Waylen, and R. S. Pulwarty, 2006: Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol., 234, 327, https://doi.org/10.1016/j.palaeo.2005.10.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1992: A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res., 97, 99199933, https://doi.org/10.1029/92JD00719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., Y. Yair, and M. Asfur, 2007: East African lightning as a precursor of Atlantic hurricane activity. Geophys. Res. Lett., 34, L09805, https://doi.org/10.1029/2006GL028884.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, X., R. Toumi, and T. Yuan, 2003: Lightning activities on the Tibetan Plateau as observed by the Lightning Imaging Sensor. J. Geophys. Res., 108, 4551, https://doi.org/10.1029/2002JD003304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qie, X., X. Wu, T. Yuan, J. Bian, and D. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Climate, 27, 66126626, https://doi.org/10.1175/JCLI-D-14-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ranalkar, M., and H. Chaudhari, 2009: Seasonal variation of lightning activity over the Indian subcontinent. Meteor. Atmos. Phys., 104, 125134, https://doi.org/10.1007/s00703-009-0026-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr., 2011: Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon. Wea. Rev., 139, 23992420, https://doi.org/10.1175/MWR-D-10-05006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr, 2012: A flash-flooding storm at the steep edge of high terrain: Disaster in the Himalayas. Bull. Amer. Meteor. Soc., 93, 17131724, https://doi.org/10.1175/BAMS-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and R. A. Houze Jr, 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, https://doi.org/10.1175/MWR-D-15-0058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., M. D. Zuluaga, and R. A. Houze Jr., 2014: Severe convection and lightning in subtropical South America. Geophys. Res. Lett., 41, 73597366, https://doi.org/10.1002/2014GL061767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J., W. Landman, and W. Tennant, 2006: Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean. Bull. Amer. Meteor. Soc., 87, 941956, https://doi.org/10.1175/BAMS-87-7-941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhea, J. O., 1966: A study of thunderstorm formation along dry lines. J. Appl. Meteor., 5, 5863, https://doi.org/10.1175/1520-0450(1966)005<0058:ASOTFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, H., and L. F. Bosart, 2002: The suppression of deep moist convection near the southern Great Plains dryline. Mon. Wea. Rev., 130, 16651691, https://doi.org/10.1175/1520-0493(2002)130<1665:TSODMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., J. Lafore, C. Piriou, and J. Redelsperger, 2005: Extratropical dry-air intrusions into the West African monsoon midtroposphere: An important factor for the convective activity over the Sahel. J. Atmos. Sci., 62, 390407, https://doi.org/10.1175/JAS-3366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockwood, A. A., and R. A. Maddox, 1988: Mesoscale and synoptic interactions leading to intense convection: The case of 7 June 1982. Wea. Forecasting, 3, 5168, https://doi.org/10.1175/1520-0434(1988)003<0051:MASSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and R. A. Houze Jr, 2011: Characteristics of precipitating convective systems in the premonsoon season of South Asia. J. Hydrometeor., 12, 157180, https://doi.org/10.1175/2010JHM1311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romatschke, U., S. Medina, and R. A. Houze Jr., 2010: Regional, seasonal, and diurnal variations of extreme convection in the South Asian region. J. Climate, 23, 419439, https://doi.org/10.1175/2009JCLI3140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, T. W. Krauss, and V. Makitov, 2006: Aircraft microphysical documentation from cloud base to anvils of hailstorm feeder clouds in Argentina. J. Appl. Meteor. Climatol., 45, 12611281, https://doi.org/10.1175/JAM2403.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Said, R. K., M. B. Cohen, and U. S. Inan, 2013: Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations. J. Geophys. Res. Atmos., 118, 69056915, https://doi.org/10.1002/JGRD.50508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakamoto, M. S., T. Ambrizzi, and G. Poveda, 2011: Moisture sources and life cycle of convective systems over western Colombia. Adv. Meteor., 2011, 890759, https://doi.org/10.1155/2011/890759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Savenije, H. H. G., 1995: New definitions of moisture recycling and relation with land-use changes in the Sahel. J. Hydrol., 167, 5778, https://doi.org/10.1016/0022-1694(94)02632-L.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1974: The life cycle of the dryline. J. Appl. Meteor., 13, 444449, https://doi.org/10.1175/1520-0450(1974)013<0444:TLCOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoenberg Ferrier, B., J. Simpson, and W.-K. Tao, 1996: Factors responsible for precipitation efficiencies in midlatitude and tropical squall simulations. Mon. Wea. Rev., 124, 21002125, https://doi.org/10.1175/1520-0493(1996)124<2100:FRFPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., C. C. Weiss, and P. M. Hoffman, 2007: The synoptic regulation of dryline intensity. Mon. Wea. Rev., 135, 16991709, https://doi.org/10.1175/MWR3376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, W., K. Cummins, G. Diendorfer, and M. Dorninger, 2005: Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res., 110, D09101, https://doi.org/10.1029/2004JD005332.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, https://doi.org/10.1175/MWR2899.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seluchi, M., and J. Marengo, 2000: Tropical–midlatitude exchange of air masses during summer and winter in South America: Climatic aspects and examples of intense events. Int. J. Climatol., 20, 11671190, https://doi.org/10.1002/1097-0088(200008)20:10<1167::AID-JOC526>3.0.CO;2-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, B. L., R. A. Pielke, and C. L. Ziegler, 1997: A three-dimensional numerical simulation of a Great Plains dryline. Mon. Wea. Rev., 125, 14891506, https://doi.org/10.1175/1520-0493(1997)125<1489:ATDNSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J. E., D. A. Mansfield, and J. R. Milford, 1977: Inland penetration of sea-breeze fronts. Quart. J. Roy. Meteor. Soc., 103, 4776, https://doi.org/10.1002/qj.49710343504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and D. A. Santek, 1985: Measuring the global distribution of intense convection over land with passive microwave radiometry. J. Climate Appl. Meteor., 24, 860864, https://doi.org/10.1175/1520-0450(1985)024<0860:MTGDOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and C. F. Mass, 1994: The structure and evolution of a simulated Rocky Mountains lee trough. Mon. Wea. Rev., 122, 27402761, https://doi.org/10.1175/1520-0493(1994)122<2740:TSAEOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 2013: Upscale effects of deep convection during the North American monsoon. J. Atmos. Sci., 70, 26812695, https://doi.org/10.1175/JAS-D-13-063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, and M. K. Nordquist, 1997: Surges over the Gulf of California during the Mexican monsoon. Mon. Wea. Rev., 125, 417437, https://doi.org/10.1175/1520-0493(1997)125<0417:SOTGOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., 2007: A sensitivity of squall-line intensity to environmental static stability under various shear and moisture conditions. Atmos. Res., 84, 374389, https://doi.org/10.1016/j.atmosres.2006.10.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., B. Czernecki, and A. Kozioł, 2015: A cloud-to-ground lightning climatology for Poland. Mon. Wea. Rev., 143, 42854304, https://doi.org/10.1175/MWR-D-15-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., P. P. Harris, and D. J. Parker, 2010: Impact of soil moisture on the development of a Sahelian mesoscale convective system: A case-study from the AMMA special observing period. Quart. J. Roy. Meteor. Soc., 136, 456470, https://doi.org/10.1002/qj.465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tetzlaff, G., and M. Peters, 1988: A composite study of early summer squall lines and their environment over West Africa. Meteor. Atmos. Phys., 38, 153163, https://doi.org/10.1007/BF01029779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 13681381, https://doi.org/10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, D. A. Ahijevych, M. L. Weisman, and G. H. Bryan, 2006: Mechanisms supporting long-lived episodes of propagating nocturnal convection within a 7-day WRF model simulation. J. Atmos. Sci., 63, 24372461, https://doi.org/10.1175/JAS3768.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and R. E. Carbone, 2004: Coherent regeneration and the role of water vapor and shear in a long-lived convective episode. Mon. Wea. Rev., 132, 192208, https://doi.org/10.1175/1520-0493(2004)132<0192:CRATRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ushio, T., S. Heckman, D. J. Boccippio, and H. J. Christian, 2001: A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. J. Geophys. Res., 106, 24 08924 095, https://doi.org/10.1029/2001JD900233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uyeda, H., and Coauthors, 2001: Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during the GAME-Tibet IOP. J. Meteor. Soc. Japan, 79, 463474, https://doi.org/10.2151/jmsj.79.463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Delden, A., 2001: The synoptic setting of thunderstorms in western Europe. Atmos. Res., 56, 89110, https://doi.org/10.1016/S0169-8095(00)00092-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velasco, I., and M. Frisch, 1987: Mesoscale convective complexes in the Americas. J. Geophys. Res., 92, 95919613, https://doi.org/10.1029/JD092iD08p09591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, https://doi.org/10.1175/JCLI3896.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze, 2016: Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. J. Atmos. Sci., 73, 47534774, https://doi.org/10.1175/JAS-D-16-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., H. B. Bluestein, and A. L. Pazmany, 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134, 273293, https://doi.org/10.1175/MWR3068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weston, K. J., 1972: The dry-line of northern India and its role in cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 98, 519531, https://doi.org/10.1002/qj.49709841704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., 2005: Kinematic, microphysical, and electrical structure and evolution of thunderstorms during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Ph.D. thesis, Colorado State University, 295 pp.

  • Wu, X., X. Qie, and T. Yuan, 2013: Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Sci. China Earth Sci., 56, 843854, https://doi.org/10.1007/s11430-012-4551-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., X. Qie, T. Yuan, and J. Li, 2016: Meteorological regimes of the most intense convective systems along the southern Himalayan front. J. Climate, 29, 43834398, https://doi.org/10.1175/JCLI-D-14-00835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., H. Xu, N. H. Saji, Y. Wang, and W. T. Liu, 2006: Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Climate, 19, 34203429, https://doi.org/10.1175/JCLI3777.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., E. J. Zipser, C. Liu, and J. Jiang, 2010: On the relationships between lightning frequency and thundercloud parameters of regional precipitation systems. J. Geophys. Res., 115, D12203, https://doi.org/10.1029/2009JD013385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and C. E. Hane, 1993: An observational study of the dryline. Mon. Wea. Rev., 121, 11341151, https://doi.org/10.1175/1520-0493(1993)121<1134:AOSOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, https://doi.org/10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., T. J. Lee, and R. A. Pielke, 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev., 125, 10011026, https://doi.org/10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571072, https://doi.org/10.1175/BAMS-87-8-1057.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuluaga, M., and R. A. Houze, 2015: Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon. Wea. Rev., 143, 298316, https://doi.org/10.1175/MWR-D-14-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 16
Full Text Views 7 7 3
PDF Downloads 11 11 5

What Are the Favorable Large-Scale Environments for the Highest-Flash-Rate Thunderstorms on Earth?

View More View Less
  • 1 Department of Physical and Environmental Sciences, Texas A&M University–Corpus Christi, Corpus Christi, Texas
  • 2 Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions
Restricted access

Abstract

A 16-yr Tropical Rainfall Measuring Mission (TRMM) convective feature (CF) dataset and ERA-Interim data are used to understand the favorable thermodynamic and kinematic environments for high-flash-rate thunderstorms globally as well as regionally. We find that intense thunderstorms, defined as having more than 50 lightning flashes within a CF during the ~90-s TRMM overpassing time share a few common thermodynamic features over various regions. These include large convective available potential energy (>1000 J kg−1), small to moderate convection inhibition (CIN), and abundant moisture convergence associated with low-level warm advection. However, each region has its own specific features. Generally, thunderstorms with high lightning flash rates have greater CAPE and wind shear than those with low flash rates, but the differences are much smaller in tropical regions than in subtropical regions. The magnitude of the low- to midtropospheric wind shear is greater over the subtropical regions, including the south-central United States, Argentina, and southwest of the Himalayas, than tropical regions, including central Africa, Colombia, and northwest Mexico, with the exception of Sahel region. Relatively, favorable environments of high-flash-rate thunderstorms in the tropical regions are characterized by higher CAPE, lower CIN, and weaker wind shear compared to the high-flash-rate thunderstorms in the subtropical regions, which have a moderate CAPE and CIN, and stronger low to midtropospheric wind shear.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nana Liu, nliu@islander.tamucc.edu

Abstract

A 16-yr Tropical Rainfall Measuring Mission (TRMM) convective feature (CF) dataset and ERA-Interim data are used to understand the favorable thermodynamic and kinematic environments for high-flash-rate thunderstorms globally as well as regionally. We find that intense thunderstorms, defined as having more than 50 lightning flashes within a CF during the ~90-s TRMM overpassing time share a few common thermodynamic features over various regions. These include large convective available potential energy (>1000 J kg−1), small to moderate convection inhibition (CIN), and abundant moisture convergence associated with low-level warm advection. However, each region has its own specific features. Generally, thunderstorms with high lightning flash rates have greater CAPE and wind shear than those with low flash rates, but the differences are much smaller in tropical regions than in subtropical regions. The magnitude of the low- to midtropospheric wind shear is greater over the subtropical regions, including the south-central United States, Argentina, and southwest of the Himalayas, than tropical regions, including central Africa, Colombia, and northwest Mexico, with the exception of Sahel region. Relatively, favorable environments of high-flash-rate thunderstorms in the tropical regions are characterized by higher CAPE, lower CIN, and weaker wind shear compared to the high-flash-rate thunderstorms in the subtropical regions, which have a moderate CAPE and CIN, and stronger low to midtropospheric wind shear.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nana Liu, nliu@islander.tamucc.edu
Save