• Birch, C. E., S. Webster, S. C. Peatman, D. J. Parker, A. J. Matthews, Y. Li, and M. E. E. Hassim, 2016: Scale interactions between the MJO and western Maritime Continent. J. Climate, 29, 24712492, https://doi.org/10.1175/JCLI-D-15-0557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheong, W. K., and K. Zheng, 2018a: Wind anomalies over Singapore and the surrounding region. MSS Res. Lett., 1, 2227, http://ccrs.weather.gov.sg/wp-content/uploads/2018/05/MRL_Issue_1_May2018_FINAL.pdf.

    • Search Google Scholar
    • Export Citation
  • Cheong, W. K., and K. Zheng, 2018b: A seasonal perspective of the Madden–Julian oscillation’s impact on Singapore rainfall. MSS Res. Lett., 2, 1217, http://ccrs.weather.gov.sg/wp-content/uploads/2019/02/MRL_Issue_2_Dec2018_FINAL.pdf.

    • Search Google Scholar
    • Export Citation
  • Fine, C. M., R. H. Johnson, P. E. Ciesielski, and R. K. Taft, 2016: The role of topographically induced vortices in tropical cyclone formation over the Indian Ocean. Mon. Wea. Rev., 144, 48274847, https://doi.org/10.1175/MWR-D-16-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. F., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P., and W. R. Boos, 2017: Global association of the Madden-Julian oscillation with monsoon lows and depressions. Geophys. Res. Lett., 44, 80658074, https://doi.org/10.1002/2017GL073625.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., C. Zhang, Z. Feng, C. D. Burleyson, C. De Mott, B. Kerns, J. J. Benedict, and M. N. Martini, 2016: The impact of the diurnal cycle on the propagation of Madden-Julian oscillation convection across the Maritime Continent. J. Adv. Model. Earth Syst., 8, 15521564, https://doi.org/10.1002/2016MS000725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C.-S., and C.-H. Sui, 2018: A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: Wave dynamics versus advective moistening processes. J. Climate, 31, 40954115, https://doi.org/10.1175/JCLI-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res., 110, D23105, https://doi.org/10.1029/2005JD006156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajakiwa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafleur, D. M., B. S. Barrett, and G. R. Henderson, 2015: Some climatological aspects of the Madden–Julian oscillation (MJO). J. Climate, 28, 60396053, https://doi.org/10.1175/JCLI-D-14-00744.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 15931606, https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, S. Y., C. Marzin, P. Xavier, C. P. Chang, and B. Timbal, 2017: Impacts of boreal winter monsoon cold surges and interaction with MJO on Southeast Asia rainfall. J. Climate, 30, 42674281, https://doi.org/10.1175/JCLI-D-16-0546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 2002: Progress in scatterometer application. J. Oceanogr., 58, 121136, https://doi.org/10.1023/A:1015832919110.

  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of a global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., 2007: Seasonality and regionality of the Madden–Julian oscillation, Kelvin wave, and equatorial Rossby wave. J. Atmos. Sci., 64, 44004416, https://doi.org/10.1175/2007JAS2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2000: Propagation mechanisms for the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 26372651, https://doi.org/10.1002/qj.49712656902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, J.-H. Qian, and M. Ghil, 2015: Weather types across the Maritime Continent: From the diurnal cycle to interannual variations. Front. Environ. Sci., 2, https://doi.org/10.3389/fenvs.2014.00065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839, https://doi.org/10.2151/jmsj1965.66.6_823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2012: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 11671180, https://doi.org/10.1007/s00382-011-1237-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden–Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, https://doi.org/10.1175/2007JAS2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., 2020: Multi-scale climate processes and rainfall variability in Sumatra and Malay Peninsula associated with ENSO in boreal fall and winter. Int. J. Climatol., https://doi.org/10.1002/joc.6450, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., A. W. Robertson, and V. Moron, 2010: Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. J. Atmos. Sci., 67, 35093524, https://doi.org/10.1175/2010JAS3348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., A. W. Robertson, and V. Moron, 2013: Diurnal cycle in different weather regimes and rainfall variability over Borneo associated with ENSO. J. Climate, 26, 17721790, https://doi.org/10.1175/JCLI-D-12-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. V. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, https://doi.org/10.1175/2010JCLI3673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., G. Kiladis, and J. Dias, 2017: The diurnal cycle of tropical cloudiness and rainfall associated with the Madden–Julian oscillation. J. Climate, 30, 39994020, https://doi.org/10.1175/JCLI-D-16-0788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus merger in the Maritime Continent region. Meteor. Atmos. Phys., 51, 7399, https://doi.org/10.1007/BF01080881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teo, C.-K., T.-Y. Koh, J. C.-H. Lo, and B. C. Bhatt, 2011: Principal component analysis of observed and modeled diurnal rainfall in the Maritime Continent. J. Climate, 24, 46624675, https://doi.org/10.1175/2011JCLI4047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2017: A 10-year austral summer climatology of observed and modeled intraseasonal, mesoscale, and diurnal variations over the Maritime Continent. J. Climate, 30, 38073828, https://doi.org/10.1175/JCLI-D-16-0688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2018: Mesoscale variation in diabatic heating around Sumatra, and its modulation with the Madden–Julian oscillation. Mon. Wea. Rev., 146, 25992614, https://doi.org/10.1175/MWR-D-17-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., F. Liu, and G. Chen, 2016: A trio-interaction theory for Madden–Julian oscillation. Geosci. Lett., 3, 34, https://doi.org/10.1186/s40562-016-0066-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., and A. Sobel, 2017: Factors controlling rain on small tropical islands: Diurnal cycle, large-scale wind speed, and topography. J. Atmos. Sci., 74, 35153532, https://doi.org/10.1175/JAS-D-16-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., J. I. Hamada, M. D. Yamanaka, J. Matsumoto, and M. Hara, 2009: The impact of orographically induced gravity waves on the diurnal cycle of rainfall over southeast Kalimantan Island. Atmos. Ocean. Sci. Lett., 2, 3539, https://doi.org/10.1080/16742834.2009.11446773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, https://doi.org/10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 38 38 12
Full Text Views 5 5 2
PDF Downloads 6 6 3

Mechanisms for the Dipolar Patterns of Rainfall Variability over Large Islands in the Maritime Continent Associated with the Madden–Julian Oscillation

View More View Less
  • 1 Centre for Climate Research Singapore, Meteorological Service Singapore, Singapore
© Get Permissions
Restricted access

Abstract

Before the eastward-propagating rainy envelope of a Madden–Julian oscillation (MJO) arrives at the Maritime Continent (MC), some islands in the MC experience dipolar patterns of rainfall variability with opposite signs of rainfall anomalies in two neighboring regions within an island. Similar incoherent rainfall anomalies are also observed after the MJO passed the MC. The mechanisms for these dipolar patterns of rainfall anomalies are investigated by using observed and reanalysis data. It is found that the response of rainfall in the MC depends on the direction of wind anomalies and the availability of atmospheric moisture in different phases of the MJO. The low-level wind anomalies over the MC are easterlies in MJO phases 1–3, which cause above-normal rainfall over the mountainous areas in Java, and in western Borneo, western Sumatra, and western Malay Peninsula, respectively. In phases 5–6, the low-level wind anomalies are westerlies and the positive rainfall anomalies are over the eastern part of the islands. Two physical mechanisms are responsible for this phenomenon of the dipolar patterns of rainfall anomalies: 1) the monsoonal damping effect on rainfall over elongated narrow islands—an inverse relationship between the intensity of the diurnal cycle of sea breezes and valley breezes and the large-scale monsoonal wind speed, and 2) the wake effect on rainfall over large and wide islands—above-normal rainfall on the downwind wake side of an island or mountain range with respect to large-scale wind anomalies.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian-Hua Qian, qian55@yahoo.com

Abstract

Before the eastward-propagating rainy envelope of a Madden–Julian oscillation (MJO) arrives at the Maritime Continent (MC), some islands in the MC experience dipolar patterns of rainfall variability with opposite signs of rainfall anomalies in two neighboring regions within an island. Similar incoherent rainfall anomalies are also observed after the MJO passed the MC. The mechanisms for these dipolar patterns of rainfall anomalies are investigated by using observed and reanalysis data. It is found that the response of rainfall in the MC depends on the direction of wind anomalies and the availability of atmospheric moisture in different phases of the MJO. The low-level wind anomalies over the MC are easterlies in MJO phases 1–3, which cause above-normal rainfall over the mountainous areas in Java, and in western Borneo, western Sumatra, and western Malay Peninsula, respectively. In phases 5–6, the low-level wind anomalies are westerlies and the positive rainfall anomalies are over the eastern part of the islands. Two physical mechanisms are responsible for this phenomenon of the dipolar patterns of rainfall anomalies: 1) the monsoonal damping effect on rainfall over elongated narrow islands—an inverse relationship between the intensity of the diurnal cycle of sea breezes and valley breezes and the large-scale monsoonal wind speed, and 2) the wake effect on rainfall over large and wide islands—above-normal rainfall on the downwind wake side of an island or mountain range with respect to large-scale wind anomalies.

Denotes content that is immediately available upon publication as open access.

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian-Hua Qian, qian55@yahoo.com
Save