• Albrecht, B. A., 1984: A model study of downstream variations of the thermodynamic structure of the trade winds. Tellus, 36A, 187202, https://doi.org/10.3402/tellusa.v36i2.11612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Scubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment––ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and R. Pincus, 1995: Cloudiness and marine boundary layer dynamics in the ASTEX Lagrangian experiments. Part I: Synoptic setting and vertical structure. J. Atmos. Sci., 52, 27072723, https://doi.org/10.1175/1520-0469(1995)052<2707:CAMBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., S. K. Krueger, M. C. Wyant, P. Bechtold, E. Van Meijgaard, B. Stevens, and J. Teixeira, 1999: A GCSS boundary-layer cloud model intercomparison study of the first ASTEX Lagrangian experiment. Bound.-Layer Meteor., 93, 341380, https://doi.org/10.1023/A:1002005429969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, https://doi.org/10.1002/jame.20019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2011: Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique. J. Geophys. Res., 116, D20305, https://doi.org/10.1029/2011JD016215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brioude, J., W. Angevine, S. McKeen, and E.-Y. Hsie, 2012a: Numerical uncertainty at mesoscale in a Lagrangian model in complex terrain. Geosci. Model Dev., 5, 11271136, https://doi.org/10.5194/gmd-5-1127-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2012b: A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO2 emission from Houston, Texas. J. Geophys. Res., 117, D05312, https://doi.org/10.1029/2011JD016918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brioude, J., and Coauthors, 2013: The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model Dev., 6, 18891904, https://doi.org/10.5194/gmd-6-1889-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Computational and Information Systems Laboratory, 2017: Cheyenne. National Center for Atmospheric Research, https://doi.org/10.5065/D6RX99HX.

    • Crossref
    • Export Citation
  • Deardorff, J., 1980: Cloud top entrainment instability. J. Atmos. Sci., 37, 131147, https://doi.org/10.1175/1520-0469(1980)037<0131:CTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and P. G. Duynkerke, 1997: Observed Lagrangian transition of stratocumulus into cumulus during ASTEX: Mean state and turbulence structure. J. Atmos. Sci., 54, 21572173, https://doi.org/10.1175/1520-0469(1997)054<2157:OLTOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, A. Kennedy, P. Minnis, and R. Wood, 2014a: A 19-month record of marine aerosol–cloud–radiation properties derived from DOE ARM mobile facility deployment at the Azores. Part I: Cloud fraction and single-layered MBL cloud properties. J. Climate, 27, 36653682, https://doi.org/10.1175/JCLI-D-13-00553.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, X., B. Xi, and P. Wu, 2014b: Investigation of the diurnal variation of marine boundary layer cloud microphysical properties at the Azores. J. Climate, 27, 88278835, https://doi.org/10.1175/JCLI-D-14-00434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GDAS, 2015: 0.25 degree global tropospheric analyses and forecast grids. NCAR Research Data Archive, accessed 1 February 2019, https://doi.org/10.5065/D65Q4T4Z.

    • Crossref
    • Export Citation
  • Giangrande, S. E., D. Wang, M. J. Bartholomew, M. P. Jensen, D. B. Mechem, J. C. Hardin, and R. Wood, 2019: Midlatitude oceanic cloud and precipitation properties as sampled by the ARM eastern North Atlantic observatory. J. Geophys. Res. Atmos., 124, 47414760, https://doi.org/10.1029/2018JD029667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanna, S., 1982: Application in air pollution modelling. Atmospheric Turbulence and Air Pollution Modelling, F. Nieuwstadt and H. van Dop, Eds., 275–310.

    • Crossref
    • Export Citation
  • Hegarty, J., and Coauthors, 2013: Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases. J. Appl. Meteor. Climatol., 52, 26232637, https://doi.org/10.1175/JAMC-D-13-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-Y., A. Hall, and J. Teixeira, 2013: Evaluation of the WRF PBL parameterizations for marine boundary layer clouds: Cumulus and stratocumulus. Mon. Wea. Rev., 141, 22652271, https://doi.org/10.1175/MWR-D-12-00292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of the Mellor–Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, https://doi.org/10.1007/s10546-015-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., C. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys., 11, 71437153, https://doi.org/10.5194/acp-11-7143-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krueger, S. K., G. T. McLean, and Q. Fu, 1995: Numerical simulation of the stratus-to-cumulus transition in the subtropical marine boundary layer. Part II: Boundary-layer circulation. J. Atmos. Sci., 52, 28512868, https://doi.org/10.1175/1520-0469(1995)052<2851:NSOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., and W. H. Schubert, 1988: Stability of cloud-topped boundary layers. Quart. J. Roy. Meteor. Soc., 114, 887916, https://doi.org/10.1002/qj.49711448204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamraoui, F., J. F. Booth, and C. M. Naud, 2018: WRF hindcasts of cold front passages over the ARM eastern North Atlantic site: A sensitivity study. Mon. Wea. Rev., 146, 24172432, https://doi.org/10.1175/MWR-D-17-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, G., and Coauthors, 2018: In situ measurements of cloud microphysical and aerosol properties during the break-up of stratocumulus cloud layers in cold air outbreaks over the North Atlantic. Atmos. Chem. Phys., 18, 17 19117 206, https://doi.org/10.5194/acp-18-17191-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacVean, M., and P. Mason, 1990: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci., 47, 10121030, https://doi.org/10.1175/1520-0469(1990)047<1012:CTEITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaa, J. R., and C. S. Bretherton, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Wea. Rev., 132, 883896, https://doi.org/10.1175/1520-0493(2004)132<0883:ANPFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McMurdie, L. A., and K. B. Katsaros, 1991: Satellite-derived integrated water-vapor distribution in oceanic midlatitude storms: Variation with region and season. Mon. Wea. Rev., 119, 589605, https://doi.org/10.1175/1520-0493(1991)119<0589:SDIWVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B., and Y. L. Kogan, 2003: Simulating the transition from drizzling marine stratocumulus to boundary layer cumulus with a mesoscale model. Mon. Wea. Rev., 131, 23422360, https://doi.org/10.1175/1520-0493(2003)131<2342:STTFDM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2010: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 536, https://doi.org/10.1017/S0022112010002831.

  • Mellado, J. P., 2017: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech., 49, 145169, https://doi.org/10.1146/annurev-fluid-010816-060231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., B. Stevens, H. Schmidt, and N. Peters, 2009: Buoyancy reversal in cloud-top mixing layers. Quart. J. Roy. Meteor. Soc., 135, 963978, https://doi.org/10.1002/QJ.417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806, https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., and B. A. Albrecht, 1995: Surface-based observations of mesoscale cumulus–stratocumulus interaction during ASTEX. J. Atmos. Sci., 52, 28092826, https://doi.org/10.1175/1520-0469(1995)052<2809:SBOOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mocko, D. M., and W. R. Cotton, 1995: Evaluation of fractional cloudiness parameterizations for use in a mesoscale model. J. Atmos. Sci., 52, 28842901, https://doi.org/10.1175/1520-0469(1995)052<2884:EOFCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1986: Large-eddy simulation of a stratus-topped boundary layer. Part I: Structure and budgets. J. Atmos. Sci., 43, 28862900, https://doi.org/10.1175/1520-0469(1986)043<2886:LESOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and A. Arakawa, 1980: A numerical study of a marine subtropical stratus cloud layer and its stability. J. Atmos. Sci., 37, 26612676, https://doi.org/10.1175/1520-0469(1980)037<2661:ANSOAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, https://doi.org/10.1007/s10546-005-9030-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895912, https://doi.org/10.2151/JMSJ.87.895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2016: The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and F. Lamraoui, 2018: Post cold frontal clouds at the ARM eastern North Atlantic site: An examination of the relationship between large-scale environment and low-level cloud properties. J. Geophys. Res. Atmos., 123, 12117, https://doi.org/10.1029/2018JD029015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, N., 1984: The stability of empirical long-range forecast techniques: A case study. J. Climate Appl. Meteor., 23, 143147, https://doi.org/10.1175/1520-0450(1984)023<0143:TSOELR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2013: WRF domain wizard. NOAA, https://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html.

  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, https://doi.org/10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1960: Principal frontal zones of the Northern Hemisphere in winter and summer. Bull. Amer. Meteor. Soc., 41, 591598, https://doi.org/10.1175/1520-0477-41.11.591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979: Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci., 36, 12861307, https://doi.org/10.1175/1520-0469(1979)036<1286:MSCPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stevens, B., 2010: Cloud-top entrainment instability? J. Fluid Mech., 660, 14, https://doi.org/10.1017/S0022112010003575.

  • Sušelj, K., J. Teixeira, and D. Chung, 2013: A unified model for moist convective boundary layers based on a stochastic eddy-diffusivity/mass-flux parameterization. J. Atmos. Sci., 70, 19291953, https://doi.org/10.1175/JAS-D-12-0106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, M., and Coauthors, 2004: Implementation and verification of the unified Noah land surface model in the WRF Model. 20th Conf. on Weather Analysis and Forecasting/16th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 14.2a, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm.

  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakefield, J. S., and W. H. Schubert, 1981: Mixed-layer mode simulation of eastern North Pacific stratocumulus. Mon. Wea. Rev., 109, 19521968, https://doi.org/10.1175/1520-0493(1981)109<1952:MLMSOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., B. A. Albrecht, and P. Minnis, 1993: A regional simulation of marine boundary-layer clouds. J. Atmos. Sci., 50, 40224043, https://doi.org/10.1175/1520-0469(1993)050<4022:ARSOMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure. J. Atmos. Sci., 62, 30113033, https://doi.org/10.1175/JAS3529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2015: Clouds, aerosols, and precipitation in the marine boundary layer: An ARM mobile facility deployment. Bull. Amer. Meteor. Soc., 96, 419440, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, H., C.-M. Wu, and C. R. Mechoso, 2011: Buoyancy reversal, decoupling and the transition from stratocumulus to shallow cumulus topped marine boundary layers. Climate Dyn., 37, 971984, https://doi.org/10.1007/s00382-010-0882-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 51 51 36
Full Text Views 18 18 9
PDF Downloads 21 21 9

Summertime Post-Cold-Frontal Marine Stratocumulus Transition Processes over the Eastern North Atlantic

View More View Less
  • 1 Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
© Get Permissions
Restricted access

Abstract

Marine boundary layer (MBL) cloud morphology associated with two summertime cold fronts over the eastern North Atlantic (ENA) is investigated using high-resolution simulations from the Weather Research and Forecasting (WRF) Model and observations from the Atmospheric Radiation Measurement (ARM) ENA Climate Research Facility. Lagrangian trajectories are used to study the evolution of post-cold-frontal MBL clouds from solid stratocumulus to broken cumulus. Clouds within specified domains in the vicinity of transitions are classified according to their degree of decoupling, and cloud-base and cloud-top breakup processes are evaluated. The Lagrangian derivative of the surface latent heat flux is found to be strongly correlated with that of the cloud fraction at cloud base in the simulations. Cloud-top entrainment instability (CTEI) is shown to operate only in the decoupled MBL. A new indicator of inversion strength at cloud top that employs the vertical gradients of equivalent potential temperature and saturation equivalent potential temperature, which can be computed directly from soundings, is proposed as an alternative to CTEI. Overall, results suggest that the deepening–warming hypothesis suggested by Bretherton and Wyant explains many of the characteristics of the summertime postfrontal MBL evolution of cloud structure over the ENA, thereby widening the phase space over which the hypothesis may be applied. A subset of the deepening–warming hypothesis involving warming initially dominating over moistening is proposed. It is postulated that changes in climate change–induced modifications in cold-frontal structure over the ENA may be accompanied by coincident changes in the location and timing of MBL cloud transitions in the post-cold-frontal environment.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Melissa Kazemi Rad, melissa.kazemirad@rutgers.edu

Abstract

Marine boundary layer (MBL) cloud morphology associated with two summertime cold fronts over the eastern North Atlantic (ENA) is investigated using high-resolution simulations from the Weather Research and Forecasting (WRF) Model and observations from the Atmospheric Radiation Measurement (ARM) ENA Climate Research Facility. Lagrangian trajectories are used to study the evolution of post-cold-frontal MBL clouds from solid stratocumulus to broken cumulus. Clouds within specified domains in the vicinity of transitions are classified according to their degree of decoupling, and cloud-base and cloud-top breakup processes are evaluated. The Lagrangian derivative of the surface latent heat flux is found to be strongly correlated with that of the cloud fraction at cloud base in the simulations. Cloud-top entrainment instability (CTEI) is shown to operate only in the decoupled MBL. A new indicator of inversion strength at cloud top that employs the vertical gradients of equivalent potential temperature and saturation equivalent potential temperature, which can be computed directly from soundings, is proposed as an alternative to CTEI. Overall, results suggest that the deepening–warming hypothesis suggested by Bretherton and Wyant explains many of the characteristics of the summertime postfrontal MBL evolution of cloud structure over the ENA, thereby widening the phase space over which the hypothesis may be applied. A subset of the deepening–warming hypothesis involving warming initially dominating over moistening is proposed. It is postulated that changes in climate change–induced modifications in cold-frontal structure over the ENA may be accompanied by coincident changes in the location and timing of MBL cloud transitions in the post-cold-frontal environment.

Denotes content that is immediately available upon publication as open access.

This article is licensed under a Creative Commons Attribution 4.0 license (http://creativecommons.org/licenses/by/4.0/).

© 2020 American Meteorological Society.

Corresponding author: Melissa Kazemi Rad, melissa.kazemirad@rutgers.edu
Save