• Alfonso, A. P., and L. R. Naranjo, 1996: The 13 March 1993 severe squall line over western Cuba. Wea. Forecasting, 11, 89102, https://doi.org/10.1175/1520-0434(1996)011<0089:TMSSLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 30343065, https://doi.org/10.1175/1520-0493(1991)119<3034:KAPSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biggerstaff, M. I., and R. A. Houze Jr., 1993: Kinematics and microphysics of the transition zone of the 10–11 June 1985 squall line. J. Atmos. Sci., 50, 30913110, https://doi.org/10.1175/1520-0469(1993)050<3091:KAMOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodine, D. J., and K. L. Rasmussen, 2017: Evolution of mesoscale convective system organizational structure and convective line propagation. Mon. Wea. Rev., 145, 34193440, https://doi.org/10.1175/MWR-D-16-0406.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schönhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Thompson, and M. Schönhuber, 2008: Aggregate terminal velocity/temperature relations. J. Appl. Meteor. Climatol., 47, 27292736, https://doi.org/10.1175/2008JAMC1869.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cunning, J. B., 1986: The Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 14781486, https://doi.org/10.1175/1520-0477(1986)067<1478:TOKPRE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and S. B. Trier, 2007: Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure. Mon. Wea. Rev., 135, 20292049, https://doi.org/10.1175/MWR3398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and T. J. Galarneau, 2009: The vertical structure of mesoscale convective vortices. J. Atmos. Sci., 66, 686704, https://doi.org/10.1175/2008JAS2819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2004: The Bow Echo and MCV Experiment: Observations and opportunities. Bull. Amer. Meteor. Soc., 85, 10751094, https://doi.org/10.1175/BAMS-85-8-1075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of ice crystal size distributions. J. Atmos. Sci., 60, 544560, https://doi.org/10.1175/1520-0469(2003)060<0544:AASOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: A test of ice self-collection kernels using aircraft data. J. Atmos. Sci., 63, 651666, https://doi.org/10.1175/JAS3653.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach for characterizing the variability in mass–dimension relationships: Results from MC3E. Atmos. Chem. Phys., 19, 36213643, https://doi.org/10.5194/acp-19-3621-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., and M. C. Coniglio, 2019: Origins of vorticity in a simulated tornadic mesovortex observed during PECAN on 6 July 2015. Mon. Wea. Rev., 147, 107134, https://doi.org/10.1175/MWR-D-18-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., N. A. Snook, and E. V. Johnson, 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, https://doi.org/10.1175/2007WAF2006120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2017: The 2015 Plains Elevated Convection at Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., G. M. McFarquhar, R. M. Rauber, A. M. Smith, and B. F. Jewett, 2009a: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part II: Column model simulations. Mon. Wea. Rev., 137, 11861205, https://doi.org/10.1175/2008MWR2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grim, J. A., R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. P. Jorgensen, 2009b: Development and forcing of the rear inflow jet in a rapidly developing and decaying squall line during BAMEX. Mon. Wea. Rev., 137, 12061229, https://doi.org/10.1175/2008MWR2503.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, Y., and K. N. Liou, 2000: Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J. Atmos. Sci., 57, 24632479, https://doi.org/10.1175/1520-0469(2000)057<2463:IORMAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmus, J. J., and S. M. Collis, 2016: The Python ARM Radar Toolkit (Py-ART), a library for working with weather radar data in the Python programming language. J. Open Res. Software, 4, e25, https://doi.org/10.5334/jors.119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., P. R. Field, M. Bailey, D. Rogers, J. Stith, C. Twohy, Z. Wang, and S. Haimov, 2011: Ice in Clouds Experiment—Layer Clouds. Part I: Ice growth rates derived from lenticular wave cloud penetrations. J. Atmos. Sci., 68, 26282654, https://doi.org/10.1175/JAS-D-11-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, S. M., R. S. Schumacher, G. R. Herman, M. C. Coniglio, M. D. Parker, and C. L. Ziegler, 2019: Evolution of pre-and postconvective environmental profiles from mesoscale convective systems during PECAN. Mon. Wea. Rev., 147, 23292354, https://doi.org/10.1175/MWR-D-18-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., M. I. Biggerstaff, S. A. Rutledge, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608619, https://doi.org/10.1175/1520-0477(1989)070<0608:IODWRD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in Arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, https://doi.org/10.1029/2012JD017668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. L. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. V. Korolev, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, https://doi.org/10.1175/JTECH-D-13-00239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, E. P., and R. H. Johnson, 2010: Patterns of precipitation and mesolow evolution in midlatitude mesoscale convective vortices. Mon. Wea. Rev., 138, 909931, https://doi.org/10.1175/2009MWR3076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 16671686, https://doi.org/10.1175/BAMS-D-14-00228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keene, K. M., and R. S. Schumacher, 2013: The bow and arrow mesoscale convective structure. Mon. Wea. Rev., 141, 16481672, https://doi.org/10.1175/MWR-D-12-00172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and G. A. Isaac, 2005: Shattering during sampling by OAPs and HVPS. Part I: Snow particles. J. Atmos. Oceanic Technol., 22, 528542, https://doi.org/10.1175/JTECH1720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Y. P. Richardson, T. Meyer, K. A. Kosiba, and J. Wurman, 2018: Resonance scattering effects in wet hail observed with a dual-X-band-frequency, dual-polarization Doppler on Wheels radar. J. Appl. Meteor. Climatol., 57, 27132731, https://doi.org/10.1175/JAMC-D-17-0362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, G., B. Geerts, Z. Wang, C. Grasmick X. Jing, and J. Yang, 2019: Interactions between a nocturnal MCS and the stable boundary layer as observed by an airborne compact Raman lidar during PECAN. Mon. Wea. Rev., 147, 31693189, https://doi.org/10.1175/MWR-D-18-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, https://doi.org/10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007a: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, https://doi.org/10.1175/MWR3444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007b: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, https://doi.org/10.1029/2007JD008633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, https://doi.org/10.1175/2010BAMS2935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, https://doi.org/10.1175/JAS-D-11-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 34133436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, https://doi.org/10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. M., G. M. McFarquhar, R. M. Rauber, J. A. Grim, M. S. Timlin, B. F. Jewett, and D. P. Jorgensen, 2009: Microphysical and thermodynamic structure and evolution of the trailing stratiform regions of mesoscale convective systems during BAMEX. Part I: Observations. Mon. Wea. Rev., 137, 11651185, https://doi.org/10.1175/2008MWR2504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smull, B. F., and R. A. Houze, 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117133, https://doi.org/10.1175/1520-0493(1985)113<0117:AMSLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stechman, D. M., G. M. McFarquhar, R. M. Rauber, M. M. Bell, B. F. Jewett, and J. Martinez, 2020: Spatiotemporal evolution of the microphysical and thermodynamic characteristics of the 20 June 2015 PECAN MCS. Mon. Wea. Rev., 148, 13631388, https://doi.org/10.1175/MWR-D-19-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B. A., M. D. Parker, and D. P. Jorgensen, 2007: A convective line with leading stratiform precipitation from BAMEX. Mon. Wea. Rev., 135, 17691785, https://doi.org/10.1175/MWR3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strapp, J. W., J. D. MacLeod, and L. E. Lilie, 2008: Calibration of ice water content in a wind tunnel/engine test cell facility. 15th Int. Conf. on Clouds and Precipitation, Cancun, Mexico, International Commission on Clouds and Precipitation, P13.1, http://cabernet.atmosfcu.unam.mx/ICCP-2008/abstracts/Program_on_line/Poster_13/StrappEtAl-extended.pdf.

  • Wakimoto, R. M., H. V. Murphey, C. A. Davis, and N. T. Atkins, 2006a: High winds generated by bow echoes. Part II: The relationship between the mesovortices and damaging straight-line winds. Mon. Wea. Rev., 134, 28132829, https://doi.org/10.1175/MWR3216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., H. V. Murphey, A. Nester, D. P. Jorgensen, and N. T. Atkins, 2006b: High winds generated by bow echoes. Part I: Overview of the Omaha bow echo 5 July 2003 storm during BAMEX. Mon. Wea. Rev., 134, 27932812, https://doi.org/10.1175/MWR3215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., P. Stauffer, and W.-C. Lee, 2015: The vertical vorticity structure within a squall line observed during BAMEX: Banded vorticity features and the evolution of a bowing segment. Mon. Wea. Rev., 143, 341362, https://doi.org/10.1175/MWR-D-14-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 2001: Bow echoes: A tribute to T. T. Fujita. Bull. Amer. Meteor. Soc., 82, 97116, https://doi.org/10.1175/1520-0477(2001)082<0097:BEATTT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., and R. J. Trapp, 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 42204241, https://doi.org/10.1175/2008MWR2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., R. J. Trapp, and N. T. Atkins, 2006: Radar and damage analysis of severe bow echoes observed during BAMEX. Mon. Wea. Rev., 134, 791806, https://doi.org/10.1175/MWR3100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, https://doi.org/10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., R. J. Meitín, and M. A. LeMone, 1981: Mesoscale motion fields associated with a slowly moving GATE convective band. J. Atmos. Sci., 38, 17251750, https://doi.org/10.1175/1520-0469(1981)038<1725:MMFAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 31 31 12
Full Text Views 6 6 3
PDF Downloads 10 10 6

Composite In Situ Microphysical Analysis of All Spiral Vertical Profiles Executed within BAMEX and PECAN Mesoscale Convective Systems

View More View Less
  • 1 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • 2 Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma; Norman, Oklahoma
  • 3 Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • 4 NOAA/OAR/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
© Get Permissions
Restricted access

Abstract

Vertical profiles of temperature, relative humidity, cloud particle concentration, median mass dimension, and mass content were derived using instruments on the NOAA P-3 aircraft for 37 spiral ascents/descents flown within five mesoscale convective systems (MCSs) during the 2015 Plains Elevated Convection at Night (PECAN) project, and 16 spiral descents of the NOAA P-3 within 10 MCSs during the 2003 Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). The statistical distribution of thermodynamic and microphysical properties within these spirals is presented in context of three primary MCS regions—the transition zone (TZ), enhanced stratiform rain region (ESR), and the anvil region (AR)—allowing deductions concerning the relative importance and nature of microphysical processes in each region. Aggregation was ubiquitous across all MCS zones at subfreezing temperatures, where the degree of ambient subsaturation, if present, moderated the effectiveness of this process via sublimation. The predominately ice-supersaturated ESR experienced the least impact of sublimation on microphysical characteristics relative to the TZ and AR. Aggregation was most limited by sublimation in the ice-subsaturated AR, where total particle number and mass concentrations decreased most rapidly with increasing temperature. Sublimation cooling at the surface of ice particles in the TZ, the driest of the three regions, allowed ice to survive to temperatures as high as +6.8°C. Two spirals executed behind a frontal squall line exhibited a high incidence of pristine ice crystals, and notably different characteristics from most other spirals. Gradual meso- to synoptic-scale ascent in this region likely contributed to the observed differences.

Current affiliations: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

Corresponding author: Daniel M. Stechman, stechman@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Abstract

Vertical profiles of temperature, relative humidity, cloud particle concentration, median mass dimension, and mass content were derived using instruments on the NOAA P-3 aircraft for 37 spiral ascents/descents flown within five mesoscale convective systems (MCSs) during the 2015 Plains Elevated Convection at Night (PECAN) project, and 16 spiral descents of the NOAA P-3 within 10 MCSs during the 2003 Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). The statistical distribution of thermodynamic and microphysical properties within these spirals is presented in context of three primary MCS regions—the transition zone (TZ), enhanced stratiform rain region (ESR), and the anvil region (AR)—allowing deductions concerning the relative importance and nature of microphysical processes in each region. Aggregation was ubiquitous across all MCS zones at subfreezing temperatures, where the degree of ambient subsaturation, if present, moderated the effectiveness of this process via sublimation. The predominately ice-supersaturated ESR experienced the least impact of sublimation on microphysical characteristics relative to the TZ and AR. Aggregation was most limited by sublimation in the ice-subsaturated AR, where total particle number and mass concentrations decreased most rapidly with increasing temperature. Sublimation cooling at the surface of ice particles in the TZ, the driest of the three regions, allowed ice to survive to temperatures as high as +6.8°C. Two spirals executed behind a frontal squall line exhibited a high incidence of pristine ice crystals, and notably different characteristics from most other spirals. Gradual meso- to synoptic-scale ascent in this region likely contributed to the observed differences.

Current affiliations: Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma.

Corresponding author: Daniel M. Stechman, stechman@ou.edu

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Save