• Abdul-Razzak, H., S. J. Ghan, and C. Rivera-Carpio, 1998: A parameterization of aerosol activation: 1. Single aerosol type. J. Geophys. Res., 103, 61236131, https://doi.org/10.1029/97JD03735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, H., J. Cermak, J. Fuchs, R. Knutti, and U. Lohmann, 2017: Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks. Atmos. Chem. Phys., 17, 95359546, https://doi.org/10.5194/acp-17-9535-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, E., and Coauthors, 2019: Overview of the NOAA/ESRL Federated Aerosol Network. Bull. Amer. Meteor. Soc., 100, 123135, https://doi.org/10.1175/BAMS-D-17-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., 2000: Indirect aerosol forcing by homogeneous and inhomogeneous clouds. J. Climate, 13, 40424049, https://doi.org/10.1175/1520-0442(2000)013<4042:IAFBHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 2007: Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J. Geophys. Res., 112, D10108, https://doi.org/10.1029/2006JD008191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boers, R., and R. M. Mitchell, 1994: Absorption feedback in stratocumulus clouds influence on cloud top albedo. Tellus, 46A, 229241, https://doi.org/10.3402/tellusa.v46i3.15476.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohren, C. F., 1987: Multiple scattering of light and some of its observable consequences. Amer. J. Phys., 55, 524533, https://doi.org/10.1119/1.15109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, T. L. Bell, and J. B. Snider, 1994: The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 24342455, https://doi.org/10.1175/1520-0469(1994)051<2434:TAOFSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2013: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES. Atmos. Chem. Phys., 13, 77957811, https://doi.org/10.5194/acp-13-7795-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G., J. Balsells, F. Glassmeier, T. Yamaguchi, J. Kazil, and A. McComiskey, 2017: Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation. J. Geophys. Res. Atmos., 122, 70867102, https://doi.org/10.1002/2017JD026467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glenn, I. B., and S. K. Krueger, 2017: Connections matter: Updraft merging in organized tropical deep convection. Geophys. Res. Lett., 44, 70877094, https://doi.org/10.1002/2017GL074162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., and Coauthors, 2019: Constraining the aerosol influence on cloud liquid water path. Atmos. Chem. Phys., 19, 53315347, https://doi.org/10.5194/acp-19-5331-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gustafson, W. I., and Coauthors, 2019: Description of the LASSO data bundles product. DOE ARM User Facility Tech. Rep. DOE/SC-ARM-TR-216, 122 pp., https://doi.org/10.2172/1469590.

    • Crossref
    • Export Citation
  • Hu, Y. X., and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728742, https://doi.org/10.1175/1520-0442(1993)006<0728:AAPOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., Y. Wang, B. Pan, J. Hu, Y. Liu, and R. Zhang, 2016: Distinct impacts of aerosols on an evolving continental cloud complex during the RACORO field campaign. J. Atmos. Sci., 73, 36813700, https://doi.org/10.1175/JAS-D-15-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., Z. Li, and M. Cribb, 2016: Response of marine boundary layer cloud properties to aerosol perturbations associated with meteorological conditions from the 19-month AMF-Azores campaign. J. Atmos. Sci., 73, 42534268, https://doi.org/10.1175/JAS-D-15-0364.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. Wu, M. P. Jensen, and T. Toto, 2011: Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo. Atmos. Chem. Phys., 11, 71557170, https://doi.org/10.5194/acp-11-7155-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., and Coauthors, 2010: Total aerosol effect: Radiative forcing or radiative flux perturbation? Atmos. Chem. Phys., 10, 32353246, https://doi.org/10.5194/acp-10-3235-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marinescu, P. J., E. J. T. Levin, D. Collins, S. M. Kreidenweis, and S. C. van den Heever, 2019: Quantifying aerosol size distributions and their temporal variability in the Southern Great Plains, USA. Atmos. Chem. Phys., 19, 11 98512 006, https://doi.org/10.5194/acp-19-11985-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., S. Platnick, T. Várnai, G. Wen, and R. F. Cahalan, 2006: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res., 111, D09207, https://doi.org/10.1029/2005JD006686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McComiskey, A., and G. Feingold, 2012: The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys., 12, 10311049, https://doi.org/10.5194/acp-12-1031-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meador, W. E., and W. R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630643, https://doi.org/10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merk, D., H. Deneke, B. Pospichal, and P. Seifert, 2016: Investigation of the adiabatic assumption for estimating cloud micro- and macrophysical properties from satellite and ground observations. Atmos. Chem. Phys., 16, 933952, https://doi.org/10.5194/acp-16-933-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mieslinger, T., Á. Horváth, S. A. Buehler, and M. Sakradzija, 2019: The dependence of shallow cumulus macrophysical properties on large-scale meteorology as observed in ASTER imagery. J. Geophys. Res. Atmos., 124, 11 47711 505, https://doi.org/10.1029/2019JD030768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neggers, R. J., A. P. Siebesma, and T. Heus, 2012: Continuous single-column model evaluation at a permanent meteorological supersite. Bull. Amer. Meteor. Soc., 93, 13891400, https://doi.org/10.1175/BAMS-D-11-00162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiburger, M., 1949: Reflection, absorption, and transmission of insolation by stratus cloud. J. Meteor., 6, 98104, https://doi.org/10.1175/1520-0469(1949)006<0098:RAATOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, R., M. David, T. E. Hoff, M. Jamaly, S. Kivalov, J. Kleissl, P. Lauret, and M. Perez, 2016: Spatial and temporal variability of solar energy. Found. Trends Renewable Energy, 1, 144, https://doi.org/10.1561/2700000006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and L. Oreopoulos, 2008: Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS. J. Geophys. Res., 113, D14S20, https://doi.org/10.1029/2007JD009654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quaas, J., and Coauthors, 2009: Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 86978717, https://doi.org/10.5194/acp-9-8697-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., 1987: The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 40754095, https://doi.org/10.1029/JD092iD04p04075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sagan, C., and J. B. Pollack, 1967: Anisotropic nonconservative scattering and the clouds of Venus. J. Geophys. Res., 72, 469477, https://doi.org/10.1029/JZ072i002p00469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuster, A., 1905: Radiation through a foggy atmosphere. Astrophys. J., 21, 122, https://doi.org/10.1086/141186.

  • Seifert, A., T. Heus, R. Pincus, and B. Stevens, 2015: Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. J. Adv. Model. Earth Syst., 7, 19181937, https://doi.org/10.1002/2015MS000489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sena, E. T., A. McComiskey, and G. Feingold, 2016: A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements. Atmos. Chem. Phys., 16, 11 30111 318, https://doi.org/10.5194/acp-16-11301-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shannon, C. E., 1948: A mathematical theory of communication. Bell Syst. Tech. J., 27, 379423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. A. Ferrare, and L. A. Brasseur, 2001: Average aerosol extinction and water vapor profiles over the Southern Great Plains. Geophys. Res. Lett., 28, 44414444, https://doi.org/10.1029/2001GL013691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, https://doi.org/10.1016/0004-6981(74)90004-3.

  • Xie, Y., and Y. Liu, 2013: A new approach for simultaneously retrieving cloud albedo and cloud fraction from surface-based shortwave radiation measurements. Environ. Res. Lett., 8, 044023, https://doi.org/10.1088/1748-9326/8/4/044023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. J. Atmos. Sci., 65, 392406, https://doi.org/10.1175/2007JAS2428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, and M. Ghil, 2005: On the diurnal cycle and susceptibility to aerosol concentration in a stratocumulus-topped mixed layer. Quart. J. Roy. Meteor. Soc., 131, 15671583, https://doi.org/10.1256/qj.04.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 107 107 57
Full Text Views 26 26 14
PDF Downloads 33 33 16

Quantification of the Radiative Effect of Aerosol–Cloud Interactions in Shallow Continental Cumulus Clouds

View More View Less
  • 1 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • 2 Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
  • 3 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and Chemical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The indirect radiative effect of aerosol variability on shallow cumulus clouds is realized in nature with considerable concurrent meteorological variability. Large-eddy simulations constrained by observations at a continental site in Oklahoma are performed to represent the variability of different meteorological states on days with different aerosol conditions. The total radiative effect of this natural covariation between aerosol and other meteorological drivers of total cloud amount and albedo is quantified. The changes to these bulk quantities are used to understand the response of the cloud radiative effect to aerosol–cloud interactions (ACI) in the context of concurrent processes, as opposed to attempting to untangle the effect of individual processes on a case-by-case basis. Mutual information (MI) analysis suggests that meteorological variability masks the strength of the relationship between cloud drop number concentration and the cloud radiative effect. This is shown to be mostly due to variation in solar zenith angle and cloud field horizontal heterogeneity masking the relationship between cloud drop number and cloud albedo. By combining MI and more traditional differential analyses, a framework to identify important modes of covariation between aerosol, clouds, and meteorological conditions is developed. This shows that accounting for solar zenith angle variation and implementing an albedo bias correction increases the detectability of the radiative effects of ACI in simulations of shallow cumulus.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Ian B. Glenn, ian.b.glenn@gmail.com

Abstract

The indirect radiative effect of aerosol variability on shallow cumulus clouds is realized in nature with considerable concurrent meteorological variability. Large-eddy simulations constrained by observations at a continental site in Oklahoma are performed to represent the variability of different meteorological states on days with different aerosol conditions. The total radiative effect of this natural covariation between aerosol and other meteorological drivers of total cloud amount and albedo is quantified. The changes to these bulk quantities are used to understand the response of the cloud radiative effect to aerosol–cloud interactions (ACI) in the context of concurrent processes, as opposed to attempting to untangle the effect of individual processes on a case-by-case basis. Mutual information (MI) analysis suggests that meteorological variability masks the strength of the relationship between cloud drop number concentration and the cloud radiative effect. This is shown to be mostly due to variation in solar zenith angle and cloud field horizontal heterogeneity masking the relationship between cloud drop number and cloud albedo. By combining MI and more traditional differential analyses, a framework to identify important modes of covariation between aerosol, clouds, and meteorological conditions is developed. This shows that accounting for solar zenith angle variation and implementing an albedo bias correction increases the detectability of the radiative effects of ACI in simulations of shallow cumulus.

Denotes content that is immediately available upon publication as open access.

Corresponding author: Ian B. Glenn, ian.b.glenn@gmail.com
Save